如圖,在直三棱柱ABC-A1B1C1D1中,點M是A1B的中點,點N是B1C的中點,連接MN.
(I)證明:MN∥平面ABC;
(II)若AB=1,AC=AA1
3
,BC=2
,點P是CC1的中點,求四面體B1-APB的體積.
分析:(1)連接AB1,可證MN∥AC,利用線面平行的判定定理可證MN∥平面ABC;
(2)利用AB=1,AC=AA1
3
,BC=2
,可證明AB⊥AC,AA1⊥AC,即AC⊥平面ABB1A1,從而VB1-APB=VP-B1AB=
1
3
S△ABB1•AC,問題即可解決.
解答:證明:(Ⅰ)連接AB1,
∵四邊形A1ABB1是矩形,點M是A1B的中點,
∴點M是AB1的中點,
∵點N是B1C的中點,
∴MN∥AC,
∵NM?平面ABC,AC?平面ABC,
∴MN∥平面ABC,…6
(Ⅱ)∵AB=1,AC=AA1
3
,BC=2
,
∴AB2+AC2=BC2
∴AB⊥AC,
∵AA1⊥AC,AA1∩AB=A,
∴AC⊥平面ABB1A1,又CC1∥平面ABB1A1
∴P到平面平面ABB1A1的距離就是AC的長度.
VB1-APB=VP-B1AB=
1
3
S△ABB1•AC=
1
3
×
1
2
×1×
3
×
3
=
1
2
…12
點評:本題考查直線與平面垂直的判定,直線與平面平行的判定,著重考查兩判定定理的應用,考查體積轉(zhuǎn)化思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

同步練習冊答案