16.命題p:y=|sinx|是周期為π的周期函數(shù),命題q:y=sin|x|是偶函數(shù),則下列命題中為真命題的是( 。
A.p∧qB.(¬p)∧qC.(¬p)∨(¬q)D.p∧(¬q)

分析 分別判斷命題p,q的真假,然后結(jié)合復(fù)合命題真假之間的關(guān)系進(jìn)行判斷即可.

解答 解:∵y=sinx是周期為2π的周期函數(shù),
∴y=|sinx|是周期為π的周期函數(shù),故命題p是真命題,
∵sin|-x|=sin|x|,
∴y=sin|x|是偶函數(shù),故命題q為真命題.
則p∧q為真命題.
故選:A.

點(diǎn)評(píng) 本題主要考查復(fù)合命題真假之間的應(yīng)用,根據(jù)條件判斷命題的真假性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知平行六面體ABCD-A1B1C1D1,底面ABCD是邊長(zhǎng)為1的正方形,AA1=2,∠A1AB=∠A1AD=120°,則異面直線AC1與A1D所成角的余弦值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\frac{{\sqrt{14}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{5}{2-i}$=( 。
A.i-2B.i+2C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在四面體PABC中,PA、PB、PC兩兩垂直,且均相等,E是AB的中點(diǎn),則異面直線AC與PE所成的角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知平面向量$\overrightarrow a=(1,-\sqrt{3}),\overrightarrow b=(3,\sqrt{3})$,則向量$\overrightarrow a$與向量$\overrightarrow{a}$$+\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.為了調(diào)查學(xué)生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為680.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.關(guān)于函數(shù)$f(x)=4sin(2x-\frac{π}{3})(x∈R)$,有下列命題:
①$y=f(x+\frac{5π}{12})$為偶函數(shù);
②要得到g(x)=-4sin2x的圖象,只需將f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位;
③y=f(x)的圖象關(guān)于點(diǎn)$({\frac{π}{6},0})$對(duì)稱;
④y=f(x)的單調(diào)遞增區(qū)間為$[{2kπ-\frac{π}{12},2kπ+\frac{5π}{12}}](k∈Z)$.
其中正確的序號(hào)為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在長(zhǎng)方體ABCD-A1B1C1D1中,DA=2,DC=3,DD1=4,M,N,E,F(xiàn)分別是棱A1D1,A1B1、,D1C1,B1C1的中點(diǎn).
求證:平面AMN∥平面EFBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,CD=2,底面ABCD為梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,點(diǎn)E在棱PB上,且PE=2EB.
(1)求證:PD∥平面EAC;
(2)求直線PD與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案