下表提供了某新生嬰兒成長過程中時間x(月)與相應的體重y(公斤)的幾組對照數(shù)據(jù).
 x0123
 y33.54.55
(1)如y與x具有較好的線性關系,請根據(jù)表中提供的數(shù)據(jù),求出線性回歸方程:
?
y
=bx+a;
(2)由此推測當嬰兒生長到五個月時的體重為多少?
參考公式:a=
.
y
-b
.
x
,b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
考點:線性回歸方程
專題:概率與統(tǒng)計
分析:(1)利用已知條件求出,樣本中心坐標,利用參考公式求出b,a,然后求出線性回歸方程:
?
y
=bx+a;
(2)通過x=5,利用回歸直線方程,推測當嬰兒生長到五個月時的體重.
解答: 解:(1)
.
x
=
6
4
=
3
2
,
.
y
=4
;
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
=
7
10
=0.7

a=
.
y
-b
.
x
=
59
20
=2.95
,
?
y
=0.7x+2.95(或者是
?
y
=
7
10
x+
59
20
)

(2)當x=5時,
?
y
=6.45

答:由此推測當嬰兒生長到五個月時的體重約是6.45公斤.
點評:本題考查回歸直線方程的求法與應用,基本知識的考查,難度不大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,AB=1,AD=2
3
,BC=3,CD=2,∠ABC=∠DCB=
π
2
,則二面角A-BC-D的大小為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在Rt△ABC中,A(-1,0),B(3,0),求:
(1)直角頂點C的軌跡方程;
(2)在(1)的條件下,直角邊BC的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=-lg2x+6lgx的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

依次計算a1=2×(1-
1
4
),a2=2×(1-
1
4
)(1-
1
9
),a3=2×(1-
1
4
)(1-
1
9
)(1-
1
16
),a4=2×(1-
1
4
)(1-
1
9
)(1-
1
16
)(1-
1
25
),猜想an=2×(1-
1
4
)(1-
1
9
)(1-
1
16
)…(1-
1
(n+1)2
)結果并用數(shù)學歸納法證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方體ABCD-EFGH中,AD=2,AB=AE=1,M為矩形AEHD內的一點,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值為
1
2
,那么點M到平面EFGH的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y、z為非零實數(shù),代數(shù)式
x
|x|
+
y
|y|
+
z
|z|
+
xyz
|xyz|
的值所成的集合是M,則M=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-1-lnx,若不等式f(x)≥bx-2對任意x∈(0,+∞)恒成立,則實數(shù)b的取值范圍是( 。
A、(-∞,1-
1
e2
]
B、[1-
1
e2
,+∞)
C、(0,1-
1
e2
]
D、[1-
1
e2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個盒子里面裝有標號分別為1,2,3,4的4張標簽,從中隨機同時抽取兩張標簽,求兩張標簽上的數(shù)字為相鄰整數(shù)的概率.

查看答案和解析>>

同步練習冊答案