【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

(1)求的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù).證明:對任意.

【答案】(1);(2)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(3)詳見解析.

【解析】

試題分析:(1)根據(jù)題意分析可能曲線在點(diǎn)處的切線與軸平行,等價(jià)于,從而;(2)由(1)可知,只需考慮分子的正負(fù)性即可,而上單調(diào)遞減,再由,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,,單調(diào)遞減,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(3),這是一指對相結(jié)合的函數(shù),混在一起考慮其單調(diào)性比較復(fù)雜,因此考慮分開研究各自的取值情況:記,,,令,得,

當(dāng)時,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,

,即.

,上單調(diào)遞減,

,即,綜合可知,.

試題解析:(1),依題意,為所求;

(2)由(1)可知,,記,

上單調(diào)遞減,又

當(dāng)時,,,單調(diào)遞增;當(dāng)時,,,單調(diào)遞減,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;

(3)

,,,令,得,

當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,

,即.

,,上單調(diào)遞減,

,即,綜合,可知,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中,,前項(xiàng)和滿足條件

1)求數(shù)列的通項(xiàng)公式和;

2)記,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為 1, 的中點(diǎn), 為線段上的動點(diǎn),過點(diǎn)A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).

①當(dāng)時, 為四邊形;②當(dāng)時, 為等腰梯形;③當(dāng)時, 為六邊形;④當(dāng)時, 的面積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若存在,使得是自然對數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?

)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在57分鐘,乙每次解答一道幾何題所用的時間在68分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ,其中是實(shí)數(shù).

1解關(guān)于的不等式

2)若,求關(guān)于的方程實(shí)根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為, 也是拋物線的焦點(diǎn),點(diǎn)在第一象限的交點(diǎn),且.

(1)求的方程;

(2)平面上的點(diǎn)滿足,直線,且與交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 過圓上任意一點(diǎn)軸引垂線垂足為(點(diǎn)、可重合),點(diǎn)的中點(diǎn).

(1)求的軌跡方程;

(2)若點(diǎn)的軌跡方程為曲線,不過原點(diǎn)的直線與曲線交于兩點(diǎn),滿足直線, , 的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在多面體中,四邊形是邊長為的正方形, 為等腰梯形,且 , , .

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案