【題目】如圖在多面體中,四邊形是邊長為的正方形, 為等腰梯形,且 , .

(1)證明:平面平面;

(2)求二面角的余弦值.

【答案】(1)見解析;(2)二面角的余弦值為.

【解析】試題分析:(1)所求證的線面垂直可以歸結(jié)為平面,可由得證.(2)建立如圖所示的空間直角坐標(biāo)系,計算兩個平面的法向量后再計算出它們的夾角的余弦為,從而二面角的平面角的余弦值為.

解析:(1)(1)∵四邊形是正方形,∴,∵, ,∴平面,∵平面,∴平面平面.

(2)過點,由(1)知平面,∵四邊形是等腰梯形, , ,∴ .

,以為坐標(biāo)原點,分別以射線、、、軸建立如圖所示的空間直角坐標(biāo)系,

, , , .∴ .

設(shè)平面的一個法向量,則,即,令

,又∵, ,同理得平面的一個法向量,∴ ,故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.

(1)求的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù).證明:對任意.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是直線)上一動點, 、是圓的兩條切線, 為切點, 為圓心,若四邊形面積的最小值是,則的值是( )

A. B. C. D.

【答案】D

【解析】∵圓的方程為: ,

∴圓心C(0,1),半徑r=1.

根據(jù)題意,若四邊形面積最小,當(dāng)圓心與點P的距離最小時,即距離為圓心到直線l的距離最小時,切線長PA,PB最小。切線長為4,

∴圓心到直線l的距離為.

∵直線,

,解得,

所求直線的斜率為

故選D.

型】單選題
結(jié)束】
19

【題目】拋物線的焦點為,準線為,經(jīng)過且斜率為的直線與拋物線在軸上方的部分相交于點, ,垂足為,則的面積是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018江西南康中學(xué)、于都中學(xué)上學(xué)期第四次聯(lián)考橢圓上動點到兩個焦點的距離之和為4,且到右焦點距離的最大值為

I)求橢圓的方程;

II)設(shè)點為橢圓的上頂點,若直線與橢圓交于兩點不是上下頂點).試問:直線是否經(jīng)過某一定點,若是,求出該定點的坐標(biāo);若不是,請說明理由;

III)在(II)的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形與梯形全等, , , , , 中點.

(Ⅰ)證明: 平面

(Ⅱ)點在線段上(端點除外),且與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等腰直角三角形, , 分別是邊的中點,現(xiàn)將沿折起,使平面, 分別是邊的中點,平面, 分別交于 兩點.

(1)求證: ;

(2)求二面角的余弦值;

(3)的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(x)=xlnx,g(x)=ax3-.

()求函數(shù)(x)的單調(diào)遞增區(qū)間和最小值;

()若函數(shù)y= (x)與函數(shù)y =g(x)的圖象在交點處存在公共切線,求實數(shù)a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 為橢圓 上任一點,, 為橢圓的焦點,,離心率為

(1)求橢圓的標(biāo)準方程;

(2)直線 經(jīng)過點 ,且與橢圓交于 , 兩點,若直線 , 的斜率依次成等比數(shù)列,求直線 的方程.

查看答案和解析>>

同步練習(xí)冊答案