【題目】如圖,在平面四邊形ABCD中,CD=1,BC=2,∠C=120°

(1)求cos∠CBD的值;

(2)若AD=4,cos∠ABC,求∠A的大。

【答案】(1);(2)

【解析】

(1)先由余弦定理求出BD,再利用余弦定理求cos∠CBD的值.(2)先求出sin∠ABD的值,再利用正弦定理求解.

(1)∵在△BCD中,CD=1,BC=2,∠C=120°.

∴由余弦定理可得:BD2=BC2+CD2﹣2BDCDcosC=4+1﹣2×2×1×(,

∴BD,∴cos∠CBD.

(2)由(1)可得sin∠CBD

∵cos∠ABC,∴sin∠ABC,

∴sin∠ABD=sin(∠ABC﹣∠CBD)=sin∠ABCcos∠CBD﹣cos∠ABCsin∠CBD

,

由正弦定理可得,即sinA,

∴A或A

∵BD<AD,∴A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1213,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,, .

(I)求證:;

(II)在棱 上取一點(diǎn) M, ,與平面所成角的正弦值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的方程為,直線的極坐標(biāo)方程為.

(I )寫出的極坐標(biāo)方程和的平面直角坐標(biāo)方程;

(Ⅱ) 若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為的交點(diǎn)為的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在黨中央的正確指導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份新冠肺炎疫情得到了控制.下圖是國家衛(wèi)健委給出的全國疫情通報(bào),甲、乙兩個(gè)省份從27日到213日一周的新增新冠肺炎確診人數(shù)的折線圖如下:

根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,通過比較把你得到最重要的兩個(gè)結(jié)論寫在答案紙指定的空白處.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當(dāng)作概率).

(1)求甲、乙兩人成績的平均數(shù)和中位數(shù);

(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=2,n(an+1﹣an)=an+1,n∈N*

(1)設(shè)bn ,求數(shù)列{bn}的通項(xiàng)公式;

(2)若對于任意的t∈[0,1],n∈N*,不等式2t2﹣(a+1)t+a2﹣a+3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,.

1)證明:是等比數(shù)列,是等差數(shù)列;

2)求的通項(xiàng)公式;

3)令,求數(shù)列的前項(xiàng)和的通項(xiàng)公式,并求數(shù)列的最大值、最小值,并指出分別是第幾項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,透明塑料制成的長方體ABCD﹣A1B1C1D1內(nèi)灌進(jìn)一些水,固定容器底面一邊BC于水平地面上,再將容器傾斜,隨著傾斜度不同,有下面五個(gè)命題:

①有水的部分始終呈棱柱形;

②沒有水的部分始終呈棱柱形;

③水面EFGH所在四邊形的面積為定值;

④棱A1D1始終與水面所在平面平行;

⑤當(dāng)容器傾斜如圖(3)所示時(shí),BEBF是定值.

其中所有正確命題的序號是 ____

查看答案和解析>>

同步練習(xí)冊答案