已知定義在R上的奇函數(shù)y=f(x)滿足y=f(x+
π
2
)
為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù);
y=f(x+
π
2
)
的圖象可以由y=f(x)的圖象向右平移
π
2
得到;
③(-π,0)是y=f(x)的圖象的一個對稱中心;
④當x=
π
2
時,y=f(x)一定取最大值.
其中描述正確的是
 
分析:由題意可得f(-x)=-f(x),y=f(x+
π
2
)為偶函數(shù)?函數(shù) y=f(x)關(guān)于x=
π
2
對稱?f(x)=f(π-x),結(jié)合各命題及函數(shù)的性質(zhì)可分別進行判斷.
解答:解:∵f(x)是R上的奇函數(shù)
∴f(-x)=-f(x)(1)
∵y=f(x+
π
2
)為偶函數(shù),函數(shù)的圖象關(guān)于y軸對稱
∴函數(shù)y=f(x)關(guān)于x=
π
2
對稱即f(x)=f(π-x)(2)
由(1)(2)可得f(2π+x)=f(x)故①正確
②y=f(x)
向左平移
π
2
y=f(x+
π
2
)
,故②錯誤
③由函數(shù)為奇函數(shù)可得f(-π)=-f(π)(1);由周期函數(shù)可得f(x)=f(x+2π)(2)由(1)(2)可得f(-π)=-f(π)=f(π)=0,從而可知③正確
④x=
π
2
是函數(shù)的對稱軸,取函數(shù)的最值,但不一定是最大值,故④錯誤
故答案為:①③
點評:本題主要考查了函數(shù)的性質(zhì)的綜合運用:函數(shù)的奇偶性,函數(shù)的對稱性(軸對稱與中心對稱),函數(shù)的周期性的相關(guān)知識的綜合運用,還要具備一定的邏輯推導的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實數(shù)a,b(a≠b),使f(x)在x∈[a,b]時,函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:大連二十三中學2011學年度高二年級期末測試試卷數(shù)學(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆浙江省高二下學期期末考試理科數(shù)學試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當0≤θ≤數(shù)學公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案