【題目】設(shè)全集.
(1)解關(guān)于的不等式;
(2)記為(1)中不等式的解集,為不等式組的整數(shù)解集,若恰有三個(gè)元素,求的取值范圍.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)通過(guò)討論a的取值范圍,求出不等式的解集即可.
(2)解不等式組求得集合B,通過(guò)討論a的范圍求出A的補(bǔ)集,再根據(jù)恰有三個(gè)元素,建立不等式求解.
(1)因?yàn)?/span>,
所以,
當(dāng) 即 時(shí),解集為R,
當(dāng) 即 時(shí),解集為 ,
當(dāng) 即 時(shí),或,
所以或,
所以解集為 或.
綜上: 時(shí),解集為R;
時(shí),解集為 ;
時(shí),解集為 或.
(2)因?yàn)?/span>,
所以,
所以,
解得 .
因?yàn)?/span>為不等式組的整數(shù)解集,
所以 ,
當(dāng) 時(shí), 不滿足恰有三個(gè)元素.
當(dāng) 時(shí),不滿足恰有三個(gè)元素.
當(dāng) 時(shí), , ,
因?yàn)?/span>恰有三個(gè)元素,
所以 ,
解得 .
綜上:的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校科技節(jié)需要同學(xué)設(shè)計(jì)一幅矩形紙板宣傳畫,要求畫面的面積為(如圖中的陰影部分),畫面的上、下各留空白,左、右各留空白.
(1)如何設(shè)計(jì)畫面的高與寬的尺寸,才能使整個(gè)宣傳畫所用紙張面積最。
(2)如果按照第一問(wèn)這樣制作整個(gè)宣傳畫,在科技節(jié)結(jié)束以后,這整個(gè)宣傳畫紙板可再次作為某實(shí)驗(yàn)道具,并要求從整個(gè)宣傳畫板的四個(gè)角各截取一個(gè)相同的小正方形,做成一個(gè)長(zhǎng)方體形的無(wú)蓋容器.問(wèn)截下的小正方形的邊長(zhǎng)(也就是該容器的高)是多少時(shí),該容器的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M=,對(duì)它的非空子集A,可將A中每個(gè)元素K都乘以再求和(如A=,可求得和為),則對(duì)M的所有非空子集,這些和的總和是__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)與的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線
(1)寫出的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),為與的交點(diǎn),求的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2019年春季以來(lái),在非洲豬瘟、環(huán)保禁養(yǎng)、上行周期等因素形成的共振條件下,豬肉價(jià)格連續(xù)暴漲.某養(yǎng)豬企業(yè)為了抓住契機(jī),決定擴(kuò)大再生產(chǎn),根據(jù)以往的養(yǎng)豬經(jīng)驗(yàn)預(yù)估:在近期的一個(gè)養(yǎng)豬周期內(nèi),每養(yǎng)百頭豬,所需固定成本為20萬(wàn)元,其它為變動(dòng)成本:每養(yǎng)1百頭豬,需要成本14萬(wàn)元,根據(jù)市場(chǎng)預(yù)測(cè),銷售收入(萬(wàn)元)與(百頭)滿足如下的函數(shù)關(guān)系:(注:一個(gè)養(yǎng)豬周期內(nèi)的總利潤(rùn)(萬(wàn)元)=銷售收入-固定成本-變動(dòng)成本).
(1)試把總利潤(rùn)(萬(wàn)元)表示成變量(百頭)的函數(shù);
(2)當(dāng)(百頭)為何值時(shí),該企業(yè)所獲得的利潤(rùn)最大,并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn), ,則與的面積之比__________.
【答案】
【解析】
由題意可得拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為。
如圖,設(shè),過(guò)A,B分別向拋物線的準(zhǔn)線作垂線,垂足分別為E,N,則
,解得。
把代入拋物線,解得。
∴直線AB經(jīng)過(guò)點(diǎn)與點(diǎn),
故直線AB的方程為,代入拋物線方程解得。
∴。
在中, ,
∴
∴。答案:
點(diǎn)睛:
在解決與拋物線有關(guān)的問(wèn)題時(shí),要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當(dāng)已知曲線是拋物線時(shí),拋物線上的點(diǎn)M滿足定義,它到準(zhǔn)線的距離為d,則|MF|=d,可解決有關(guān)距離、最值、弦長(zhǎng)等問(wèn)題;二是利用動(dòng)點(diǎn)滿足的幾何條件符合拋物線的定義,從而得到動(dòng)點(diǎn)的軌跡是拋物線.
【題型】填空題
【結(jié)束】
17
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面,為棱的中點(diǎn).,,.
(1)求證:平面;
(2)在棱上是否存在點(diǎn),使得平面平面?如果存在,求此時(shí)的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱中,各棱長(zhǎng)均為4, 、分別是,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com