已知下列一組數(shù)據(jù):87,91,90,89,x,若它們的平均數(shù)為90,則x=
 
考點(diǎn):眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:由平均數(shù)的定義可得x的方程,解方程可得.
解答: 解:由題意可得87+91+90+89+x=90×5,
解得x=93
故答案為:93
點(diǎn)評:本題考查平均數(shù)的定義,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
a+i
3+4i
-1(a為實(shí)數(shù),i為虛數(shù)單位)是純虛數(shù),則a=( 。
A、7
B、-7
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3x|x-a|.
(1)當(dāng)a=
1
2
時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)在區(qū)間[0,2]內(nèi)有極小值,且極小值不小于2a2-
3
4
a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn),M,N分別是棱AB,AD,A1B1,A1D1的中點(diǎn),點(diǎn)P,Q分別在棱DD1,BB1上移動,且DP=BQ=λ(0<λ<2)
(Ⅰ)當(dāng)λ=1時(shí),證明:直線BC1∥平面EFPQ;
(Ⅱ)是否存在λ,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點(diǎn).
(Ⅰ)求證:EF⊥BC;
(Ⅱ)求二面角E-BF-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠ABC=90°,若BD⊥AC且BD交AC于點(diǎn)D,丨
BD
丨=
3
,則
BD
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(diǎn)(
1
2
,
2
2
),則f(4)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
-2x,x≤0
,則關(guān)于x的方程f[f(x)]=-1的兩個(gè)解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(每位同學(xué)被選到的可能性相同).
(Ⅰ)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(Ⅱ)設(shè)X為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案