已知雙曲線的方程為-=1(a>0,b>0),雙曲線的一個焦點到一條漸近線的距離為c(其中c為雙曲線的半焦距長),則該雙曲線的離心率為( ).
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
已知圓C:x2+y2+mx-4=0上存在兩點關于直線x-y+3=0對稱,則實數(shù)m的值為( ).
A.8 B.-4
C.6 D.無法確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
拋物線C1:y=x2(p>0)的焦點與雙曲線C2:-y2=1的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則p= ( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F2,且|F1F2|=2,橢圓的長半軸與雙曲線半實軸之差為4,離心率之比為3∶7.
(1)求這兩曲線方程;
(2)若P為這兩曲線的一個交點,求cos∠F1PF2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,過拋物線y2=2px(p>0)的焦點F的直線交拋物線于點A,B,
交其準線l于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( ).
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知雙曲線C1:-=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為( ).
A.x2=y B.x2=y
C.x2=8y D.x2=16y
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com