【題目】設(shè)函數(shù) = ,其中 ,若存在唯一的整數(shù) ,使得 ,則 的取值范圍是( )
A.[- ,1)
B.[- ,
C.[
D.[ ,1)

【答案】D
【解析】

函數(shù) ,其中 ,
設(shè)
存在唯一的整數(shù) 使得
存在唯一的整數(shù) 使得 在直線 的下方

當(dāng) 時(shí),
當(dāng) 時(shí),
當(dāng) 時(shí), ,
直線 恒過 ,斜率為

,
解出
故選
本題主要考查導(dǎo)數(shù)的應(yīng)用以及利用導(dǎo)數(shù)求解函數(shù)的極值問題,要注意結(jié)合圖像進(jìn)行求解。設(shè) g ( x ) = e x ( 2 x 1 ) , y = a x a,由存在唯一的整數(shù) x 0 使得 f ( x 0 ) < 0 存在唯一的整數(shù) 使得 在直線 的下方,根據(jù)數(shù)形結(jié)合可得, a > g ( 0 ) = 1即g ( 1 ) = 3 e 1 ≥ a a ,然后解不等式即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中,底面 是平行四邊形,側(cè)面 底面 , 分別為 的中點(diǎn), , .

(1)求證: 平面
(2)求證:平面 平面 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 底面 為菱形,平面 平面 , , , , 的中點(diǎn).

(1)證明: ;
(2)二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋內(nèi)裝有6個(gè)球,這些球依次被編號(hào)為1、2、3、……、6,設(shè)編號(hào)為n的球重n2-6n+12(單位:克),這些球等可能地從袋里取出(不受重量、編號(hào)的影響).

(1)從袋中任意取出一個(gè)球,求其重量大于其編號(hào)的概率;

(2)如果不放回地任意取出2個(gè)球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一段時(shí)間內(nèi)有2000輛車通過高速公路上的某處,現(xiàn)隨機(jī)抽取其中的200輛進(jìn)行車速統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如右面的頻率分布直方圖所示.若該處高速公路規(guī)定正常行駛速度為90km/h~120 km/h,試估計(jì)2000輛車中,在這段時(shí)間內(nèi)以正常速度通過該處的汽車約有( )

A.30輛
B.1700輛
C.170輛
D.300輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點(diǎn)(1,13),且函數(shù) 是偶函數(shù).

(1)求的解析式;

(2)已知,,求函數(shù)在[,2]上的最大值和最小值;

(3)函數(shù)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線 的焦點(diǎn),斜率為 的直線交拋物線于 , )兩點(diǎn),且 .
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn), 為拋物線上一點(diǎn),若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且a2=3b2+3c2﹣2 bcsinA,則C的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若對(duì)任意的,總存在使成立,求實(shí)數(shù)的取值范圍;

(3)若的值域?yàn)閰^(qū)間,是否存在常數(shù),使區(qū)間的長(zhǎng)度為?若存在,求出的值,若不存在,請(qǐng)說明理由.(柱:區(qū)間的長(zhǎng)度為

查看答案和解析>>

同步練習(xí)冊(cè)答案