【題目】如圖所示,已知+=1(a>>0)點(diǎn)A(1,)是離心率為的橢圓C:上的一點(diǎn),斜率為的直線(xiàn)BD交橢圓C于B、D兩點(diǎn),且A、B、D三點(diǎn)不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求△ABD面積的最大值;
(Ⅲ)設(shè)直線(xiàn)AB、AD的斜率分別為k1 , k2 , 試問(wèn):是否存在實(shí)數(shù)λ,使得k1+λk2=0成立?若存在,求出λ的值;否則說(shuō)明理由.
【答案】解:(Ⅰ)∵e==,∴a=c,
∴b2=c2
∴橢圓方程為+=1
又點(diǎn)A(1,)在橢圓上,
∴=1,
∴c2=2
∴a=2,b=,
∴橢圓方程為=1
(Ⅱ)設(shè)直線(xiàn)BD方程為y=x+b,D(x1 , y1),B(x2 , y2),
與橢圓方程聯(lián)立,可得4x2+2bx+b2﹣4=0
△=﹣8b2+64>0,∴﹣2<b<2
x1+x2=﹣b,x1x2=
∴|BD|==,
設(shè)d為點(diǎn)A到直線(xiàn)y=x+b的距離,∴d=
∴△ABD面積S=≤=
當(dāng)且僅當(dāng)b=±2時(shí),△ABD的面積最大,最大值為
(Ⅲ)當(dāng)直線(xiàn)BD過(guò)橢圓左頂點(diǎn)(﹣,0)時(shí),k1==2﹣,k2==﹣2
此時(shí)k1+k2=0,猜想λ=1時(shí)成立.
證明如下:k1+k2=+=2+m=2﹣2=0
當(dāng)λ=1,k1+k2=0,故當(dāng)且僅當(dāng)λ=1時(shí)滿(mǎn)足條件
【解析】(Ⅰ)利用橢圓的離心率,化簡(jiǎn)橢圓方程,代入A,即可求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)BD方程為y=x+b,與橢圓方程聯(lián)立,表示出面積,利用基本不等式求△ABD面積的最大值;
(Ⅲ)k1+k2=0,猜想λ=1時(shí)成立,再進(jìn)行證明即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù)z=a+i(i是虛數(shù)單位,a∈R,a>0),且|z|= .
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)在復(fù)平面內(nèi),若復(fù)數(shù)+(m∈R)對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線(xiàn)左焦點(diǎn)F1的弦AB長(zhǎng)為6,則△ABF2(F2為右焦點(diǎn))的周長(zhǎng)是( 。
A.12
B.14
C.22
D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=3x , f(a+2)=27,函數(shù)g(x)=λ2ax﹣4x的定義域?yàn)閇0,2].
(1)求a的值;
(2)若λ=2,試判斷函數(shù)g(x)在[0,2]上的單調(diào)性,并加以證明;
(3)若函數(shù)g(x)的最大值是 ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)= ,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿(mǎn)足a1=1, (n∈N+).
(1)證明:數(shù)列 是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)設(shè)bn=n(n+1)an , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】徐州、蘇州兩地相距500千米,一輛貨車(chē)從徐州勻速行駛到蘇州,規(guī)定速度不得超過(guò)100千米/小時(shí).已知貨車(chē)每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為a元(a>0).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車(chē)應(yīng)以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(﹣2,5),且斜率為﹣
(1)求直線(xiàn)l的方程;
(2)若直線(xiàn)m與l平行,且點(diǎn)P到直線(xiàn)m的距離為3,求直線(xiàn)m的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com