a、xR,A=24x2-5x+9,B=3x2+ax+a,C=x2+(a+1)x-31,

求:(1)使A=2,3,4x值;

(2)使2B,BAa,x的值;(3)使B=Ca,x的值

答案:
解析:

解:(1)∵ A={24x2-5x+9}={2,34}

  ∴ x2-5x+9=3,解得x=2x=3

  (2)∵ 2B,且BA,∴ 

  解得:

  (3)∵ B=C,∴ 

  解得:


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“周期點(diǎn)”,函數(shù)f(x)的“不動(dòng)點(diǎn)”和“周期點(diǎn)”的集合分別記為A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求證:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“周期點(diǎn)”,函數(shù)f(x)的“不動(dòng)點(diǎn)”和“周期點(diǎn)”的集合分別記為A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求證:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“周期點(diǎn)”,函數(shù)f(x)的“不動(dòng)點(diǎn)”和“周期點(diǎn)”的集合分別記為A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求證:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省無(wú)錫市宜興市丁蜀高級(jí)中學(xué)高三數(shù)學(xué)限時(shí)訓(xùn)練(2)(解析版) 題型:解答題

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“周期點(diǎn)”,函數(shù)f(x)的“不動(dòng)點(diǎn)”和“周期點(diǎn)”的集合分別記為A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求證:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京市人大附中高一(上)模塊數(shù)學(xué)試卷(必修1)(解析版) 題型:解答題

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“周期點(diǎn)”,函數(shù)f(x)的“不動(dòng)點(diǎn)”和“周期點(diǎn)”的集合分別記為A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求證:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案