已知各項均不相等的等差數(shù)列的前三項和為18,是一個與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項,(1)求的通項公式.(2)記數(shù)列,的前三項和為,求證:
(1);(2)先求和,然后再利用放縮法證明
解析試題分析:(1)是一個與無關(guān)的常數(shù)………2分
又………4分
………6分
(2)…8分
又因為
即……12分
所以:……12分
考點:本題考查了數(shù)列的通項和前n項和公式
點評:數(shù)列的通項公式及應(yīng)用是數(shù)列的重點內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對數(shù)列考查的一個亮點,也是一種趨勢.隨著新課標(biāo)實施的深入,高考關(guān)注的重點為等差、等比數(shù)列的通項公式,錯位相減法、裂項相消法等求數(shù)列的前n項的和等等
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列:
(1)觀察規(guī)律,寫出數(shù)列的通項公式,它是個什么數(shù)列?
(2)若,設(shè) ,求。
(3)設(shè),為數(shù)列的前項和,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項均為正數(shù)的數(shù)列前項和為,且.
(1)求數(shù)列的通項公式;
(2)已知公比為的等比數(shù)列滿足,且存在滿足,,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在數(shù)列中, ,,.
(Ⅰ)證明數(shù)列是等比數(shù)列;
(II)求數(shù)列的前項和.
(Ⅲ)證明對任意,不等式成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com