【題目】2020年是中國傳統(tǒng)的農(nóng)歷“鼠年”,有人用3個圓構成“卡通鼠”的形象,如圖:是圓的圓心,圓過坐標原點;點均在軸上,圓與圓的半徑都等于2,圓均與圓外切.已知直線過點

1)若直線與圓、圓均相切,則截圓所得弦長為__________;

2)若直線截圓、圓、圓所得弦長均等于,則__________

【答案】3

【解析】

1)設出公切線方程,利用圓心到直線的距離等于半徑列出方程求解即可;

2)設出方程,分別表示出圓心到直線的距離,,,結合弦長公式求得,即可

解:(1)根據(jù)條件得到兩圓的圓心坐標分別為,

設公切線方程為存在,則,解得,

故公切線方程為,則到直線的距離

截圓的弦長;

2)設方程為存在,則三個圓心到該直線的距離分別為:

,,

,

即有,①,②

解①得,代入②得,

,即,

故答案為:3;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為

1)若直線與曲線至多只有一個公共點,求實數(shù)的取值范圍;

2)若直線與曲線相交于,兩點,且,的中點為,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮數(shù)列的前項中的最大項為,最小項為,設.

1)若,求數(shù)列的通項公式;

2)若,求數(shù)列的前項和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)R).

1)當時,求函數(shù)的單調區(qū)間;

2)若對任意實數(shù),當時,函數(shù)的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,橢圓的左,右焦點分別為,點又恰為拋物線的焦點,以為直徑的圓與橢圓僅有兩個公共點.

1)求橢圓的標準方程;

2)若直線相交于,兩點,記點,到直線的距離分別為,,.直線相交于兩點,記,的面積分別為,

(。┳C明:的周長為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國在北宋1084年第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達到古代數(shù)學的高峰,其中一些算法如開立方和開四次方也是當時世界數(shù)學的高峰.某圖書館中正好有這十本書現(xiàn)在小明同學從這十本書中任借兩本閱讀,那么他取到的書的書名中有字的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當悠久,日前我國南方農(nóng)戶在播種水稻時一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進行試驗.其中第一組采用直播的方式進行播種,第二組采用撒播的方式進行播種.得到數(shù)據(jù)如下表:

產(chǎn)量(單位:斤)

播種方式

[840,860

[860,880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

約定畝產(chǎn)超過900斤(含900斤)為產(chǎn)量高,否則為產(chǎn)量低

1)請根據(jù)以上統(tǒng)計數(shù)據(jù)估計100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)

2)請根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有99%的把握認為產(chǎn)量高播種方式有關?

產(chǎn)量高

產(chǎn)量低

合計

直播

散播

合計

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1970424日,我國發(fā)射了自己的第一顆人造地球衛(wèi)星“東方紅一號”,從此我國開始了人造衛(wèi)星的新篇章.人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星與地球的連線)在相同的時間內掃過的面積相等.設橢圓的長軸長、焦距分別為,,下列結論正確的是(

A.衛(wèi)星向徑的取值范圍是

B.衛(wèi)星在左半橢圓弧的運行時間大于其在右半橢圓弧的運行時間

C.衛(wèi)星向徑的最小值與最大值的比值越大,橢圓軌道越扁

D.衛(wèi)星運行速度在近地點時最大,在遠地點時最小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知的兩頂點坐標,,圓的內切圓,在邊,,上的切點分別為,

(Ⅰ)求證:為定值,并求出動點的軌跡的方程;

(Ⅱ)過的斜率不為零直線交曲線、兩點,求證:為定值.

查看答案和解析>>

同步練習冊答案