【題目】共享單車是城市交通的一道亮麗的風(fēng)景,給人們短距離出行帶來了很大的方便.某校”單車社團(tuán)”對市年齡在歲騎過共享單車的人群隨機(jī)抽取人調(diào)查,騎行者的年齡情況如下圖顯示。

(1)已知年齡段的騎行人數(shù)是兩個(gè)年齡段的人數(shù)之和,請估計(jì)騎過共享單車人群的年齡的中位數(shù);

(2)從兩個(gè)年齡段騎過共享單車的人中按的比例用分層抽樣的方法抽取人,從中任選人,求兩人都在)的概率.

【答案】(1)40;(2)

【解析】分析:(1)先根據(jù)題意得到關(guān)于a,b的方程組,解方程組得a,b的值,再利用頻率分布直方圖中位數(shù)的公式求騎過共享單車人群的年齡的中位數(shù).(2)利用古典概型求兩人都在)的概率.

詳解:(1)根據(jù)頻率直方圖中結(jié)論:所有頻率之和為,

則有:,

即有:,

年齡段的騎行人數(shù)是兩個(gè)年齡段的人數(shù)之和,

有:

所以

,

∴估計(jì)騎過共享單車的人群的年齡的中位數(shù)是.

(2)兩個(gè)年齡段騎過共享單車的人數(shù)分別為人,人,

的比例用分層抽樣的方法共抽取人,其中在內(nèi)有人,內(nèi)有人.

內(nèi)的人分別為,

內(nèi)人為.

則任選人共有:,共種情況.

而兩人都在內(nèi)有種情況,

所以所求的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生研究學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時(shí)間的變化而變化,老師講課開始時(shí),學(xué)生的興趣激增;接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時(shí)間,隨后學(xué)生的注意力開始分散.設(shè)表示學(xué)生注意力指標(biāo).

該小組發(fā)現(xiàn)隨時(shí)間(分鐘)的變化規(guī)律(越大,表明學(xué)生的注意力越集中)如下:).

若上課后第分鐘時(shí)的注意力指標(biāo)為,回答下列問題:

)求的值.

)上課后第分鐘和下課前分鐘比較,哪個(gè)時(shí)間注意力更集中?并請說明理由.

)在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到的時(shí)間能保持多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分12分已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合,且兩個(gè)坐標(biāo)系的單位長度相同已知直線l的參數(shù)方程為t為參數(shù),曲線C的極坐標(biāo)方程為

若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo)

若直線l與曲線C相交弦長為,求直線l的參數(shù)方程標(biāo)準(zhǔn)形式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在函數(shù)的圖象上,數(shù)列的前項(xiàng)和為,數(shù)列的前 項(xiàng)和為,且的等差中項(xiàng).

)求數(shù)列的通項(xiàng)公式.

)設(shè),數(shù)列滿足,.求數(shù)列的前項(xiàng)和

)在()的條件下,設(shè)是定義在正整數(shù)集上的函數(shù),對于任意的正整數(shù),,恒有成立,且為常數(shù),),試判斷數(shù)列是否為等差數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過底面是矩形的四棱錐FABCD的頂點(diǎn)FEFAB,使AB=2EF,且平面ABFE⊥平面ABCD,若點(diǎn)GCD上且滿足DG=G.

求證:(1)FG∥平面AED;

(2)平面DAF⊥平面BAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,動(dòng)點(diǎn)滿足成等差數(shù)列。

(1)求點(diǎn)的軌跡方程;

(2)對于軸上的點(diǎn),若滿足,則稱點(diǎn)為點(diǎn)對應(yīng)的“比例點(diǎn)”,問:對任意一個(gè)確定的點(diǎn),它總能對應(yīng)幾個(gè)“比例點(diǎn)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的左焦點(diǎn)為,且過點(diǎn).

(Ⅰ)求橢圓E的方程;

(Ⅱ)設(shè)直線與橢圓E交于兩點(diǎn),與的交點(diǎn)為,且滿足.

,求 的值

設(shè)點(diǎn)是橢圓E的左頂點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為點(diǎn),試探究:在線段上是否存在一個(gè)定點(diǎn),使得直線過定點(diǎn),如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次足球比賽共12支球隊(duì)參加,分三個(gè)階段進(jìn)行.

(1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊(duì)進(jìn)行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;

(2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場交叉淘汰賽(每兩隊(duì)主客場各賽一場)決出勝者;

(3)決賽:兩個(gè)勝隊(duì)參加決賽一場,決出勝負(fù).

問全程賽程共需比賽多少場?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某單位用2160萬元購得一塊空地,計(jì)劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費(fèi)用為 (單位:元).

(1)寫出樓房每平方米的平均綜合費(fèi)用關(guān)于建造層數(shù)的函數(shù)關(guān)系式;

(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?

(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用=)

查看答案和解析>>

同步練習(xí)冊答案