(1)已知
1
Cm5
-
1
Cm6
=
7
10
Cm7
,求C8m;
(2)解方程C16x2-x=C165x-5;
(3)計(jì)算C100+C111+C122+…+C10099
(1)由已知得
m!(5-m)!
5!
-
m!(6-m)!
6!
=
7(7-m)!m!
10•7!
,
化簡(jiǎn)得m2-23m+42=0,
解得m=2或21,
但0≤m≤5,故m=2.
Cm8
=
C28
=
8×7
2×1
=28

(2)原方程可化為x2-x=5x-5或x2-x=16-(5x-5),
即x2-6x+5=0或x2+4x-21=0,
解得x=1或x=5或x=-7或x=3,
經(jīng)檢驗(yàn)x=5或x=-7不合題意,
故原方程的根為x=1或x=3.
(3)原式=(C110+C111)+C122+…+C10099=(C121+C122)+…+C10099
=(C132+C133)++C10099=
C99101
=
C2101
=
101×100
2×1
=5050
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知
1
C
m
5
-
1
C
m
6
=
7
10
C
m
7
,求C8m;
(2)解方程C
 
x2-x
16
=C165x-5;
(3)計(jì)算C100+C111+C122+…+C10090

查看答案和解析>>

同步練習(xí)冊(cè)答案