【題目】已知橢圓的兩個焦點,與短軸的一個端點構(gòu)成一個等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過橢圓的左頂點的兩條直線,分別交橢圓兩點,且,求證:直線過定點,并求出定點坐標(biāo);

3)在(2)的條件下求面積的最大值.

【答案】(1);(2)證明見;解析;定點;(3).

【解析】

1)根據(jù)直線與圓相切得圓心到直線距離等于半徑列一個方程,再根據(jù)等邊三角形性質(zhì)得,解方程組得 ,即得結(jié)果;

2)先設(shè)直線方程,與橢圓方程聯(lián)立分別解得M,N坐標(biāo),再求斜率(注意討論),利用點斜式得直線方程,即得定點坐標(biāo);

3)利用韋達(dá)定理以及弦長公式得,再根據(jù)三角形面積公式得面積的函數(shù)關(guān)系式,最后根據(jù)基本不等式求最大值.

1)由題意可得:,,

橢圓的方程為:.

2)由題意知,設(shè):,.

消去得:,

解得:(舍去),,

,同理可得:.

i:當(dāng)時,直線斜率存在,

,

,直線過定點.

ii:當(dāng)時,直線斜率不存在,直線方程為:,也過定點,

綜上所述:直線過定點.

3)設(shè),由(2)知:

,

,單調(diào)遞減,

∴當(dāng)時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自貢農(nóng)科所實地考察,研究發(fā)現(xiàn)某貧困村適合種植,兩種藥材,可以通過種植這兩種藥材脫貧.通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):藥材的畝產(chǎn)量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:

編號

1

2

3

4

5

年份

2015

2016

2017

2018

2019

單價(元/公斤)

18

20

23

25

29

藥材的收購價格始終為20/公斤,其畝產(chǎn)量的頻率分布直方圖如下:

1)若藥材的單價(單位:元/公斤)與年份編號具有線性相關(guān)關(guān)系,請求出關(guān)于的回歸直線方程,并估計2020年藥材的單價;

2)用上述頻率分布直方圖估計藥材的平均畝產(chǎn)量,若不考慮其他因素,試判斷2020年該村應(yīng)種植藥材還是藥材?并說明理由.

參考公式:,(回歸方程中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強大腦》是江蘇衛(wèi)視引進(jìn)德國節(jié)目《Super Brain》而推出的大型科學(xué)競技真人秀節(jié)目,節(jié)目籌備組透露挑選選手的方式:不但要對空間感知、照相式記憶進(jìn)行考核,而且要讓選手經(jīng)過名校最權(quán)威的腦力測試,分以上才有機會入圍,某重點高校準(zhǔn)備調(diào)查腦力測試成績是否與性別有關(guān),在該高校隨機抽取男、女學(xué)生各名,然后對這名學(xué)生進(jìn)行腦力測試,規(guī)定:分?jǐn)?shù)不小于分為“入圍學(xué)生”,分?jǐn)?shù)小于分為“未入圍學(xué)生”,已知男生入圍人,女生未入圍人,

(1)根據(jù)題意,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為腦力測試后是否為“入圍學(xué)生”與性別有關(guān).

性別

入圍人數(shù)

未入圍人數(shù)

總計

男生

24

女生

80

總計

(2)用分層抽樣的方法從“入圍學(xué)生”中隨機抽取名學(xué)生.

(。┣筮@名學(xué)生中女生的人數(shù);

(ⅱ)若抽取的女生的腦力測試分?jǐn)?shù)各不相同(每個人的分?jǐn)?shù)都是整數(shù)),求這名學(xué)生中女生測試分?jǐn)?shù)的平均分的最小值.

附:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四個點,,中有3個點在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且,直線軸、軸分別交于兩點,設(shè)直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若,判斷函數(shù)的單調(diào)性;

(2)討論函數(shù)的極值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.

(1)設(shè)圓求過2,0的直線關(guān)于圓的距離比的直線方程;

(2)若圓軸相切于點0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;

(3)是否存在點,使過的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“水是生命之源”,但是據(jù)科學(xué)界統(tǒng)計可用淡水資源僅占地球儲水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸):一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有60萬居民,估計全市居民中月均用水量不低于2.5噸的人數(shù),并說明理由;

(3)若該市政府希望使的居民每月的用水不按議價收費,估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:

(1)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)

(2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差

(。├迷撜龖B(tài)分布,求;

(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求

附:.若,則,

查看答案和解析>>

同步練習(xí)冊答案