5.已知三棱錐A-BCD的四個(gè)頂點(diǎn)A、B、C、D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=$\sqrt{3}$,BC=2,CD=$\sqrt{5}$,則球O的表面積為12π.

分析 證明BC⊥平面ACD,三棱錐S-ABC可以擴(kuò)充為以AC,BC,DC為棱的長方體,外接球的直徑為體對(duì)角線,求出球的半徑,即可求出球O的表面積.

解答 解:由題意,AC⊥平面BCD,BC?平面BCD,
∴AC⊥BC,
∵BC⊥CD,AC∩CD=C,
∴BC⊥平面ACD,
∴三棱錐S-ABC可以擴(kuò)充為以AC,BC,DC為棱的長方體,外接球的直徑為體對(duì)角線,
∴4R2=AC2+BC2+CD2=12,
∴R=$\sqrt{3}$,
∴球O的表面積為4πR2=12π.
故答案為12π.

點(diǎn)評(píng) 本題給出特殊的三棱錐,由它的外接球的表面積.著重考查了線面垂直的判定與性質(zhì)、勾股定理與球的表面積公式等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在平行六面體ABCD-A'B'C'D'中,$AB=3,AD=4,AA'=4,∠BAD=\frac{π}{2}$,$∠BAA'=\frac{π}{3}$,$∠DAA'=\frac{π}{3}$,則AC'=$\sqrt{69}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在各項(xiàng)為正實(shí)數(shù)的等差數(shù)列{an}中,其前2016項(xiàng)的和S2016=1008,則$\frac{1}{{{a_{1001}}}}+\frac{9}{{{a_{1016}}}}$的最小值為( 。
A.12B.16C.$\frac{1}{84}$D.$\frac{2}{251}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A(5,-1),B(m,m),C(2,3)三點(diǎn).
(1)若AB⊥BC,求m的值;
(2)求線段AC的中垂線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=0,S5=-5.則數(shù)列$\left\{{\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}}\right\}$的前50項(xiàng)和T50=$\frac{-51}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow$=(x,-$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則|$\overrightarrow{a}$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,二面角A-C1C-B的大小為$\frac{π}{3}$,點(diǎn)D線段BC的中點(diǎn).
(1)若AB=AC,求證:平面BB1C1C⊥平面AB1D;
(2)當(dāng)三棱柱ABC-A1B1C1的體積最大時(shí),求直線A1D與平面AB1D所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-2a2lnx(a>0).
(1)若f(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求f(x)在(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2cos2x+sin(2x-$\frac{π}{6}$)
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;最大值,以及取得最大值時(shí)x的取值集合;
(2)已知△ABC中,角A、B、C的對(duì)邊分別為a,b,c,若f(A)=$\frac{3}{2}$,b+c=2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案