已知拋物線與直線相交于A、B 兩點(diǎn).
(1)求證:;
(2)當(dāng)的面積等于時(shí),求的值.
(1)見解析;(2)

試題分析:(1)通過證明得到.
(2)注意到,因此由.應(yīng)用韋達(dá)定理確定,利用的面積等于,建立的方程.
.  13分
試題解析:(1)證明:設(shè) ,
,
由A,N,B共線,,
,
.    6分
(2)解: , 由.
.  13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓的左頂點(diǎn),為橢圓上不同于點(diǎn)的兩點(diǎn),若原點(diǎn)在的外部,且為直角三角形,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),直線AG,BG相交于點(diǎn)G,且它們的斜率之積是
(Ⅰ)求點(diǎn)G的軌跡的方程;
(Ⅱ)圓上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn),直線PA交(Ⅰ)中的軌跡于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知中心在原點(diǎn)的橢圓的離心率,一條準(zhǔn)線方程為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若以>0)為斜率的直線與橢圓相交于兩個(gè)不同的點(diǎn),且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點(diǎn)的兩條弦,且其焦點(diǎn),,點(diǎn)軸上一點(diǎn),記,其中為銳角.

(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過原點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),如果一個(gè)橢圓經(jīng)過點(diǎn)P(3,),且以點(diǎn)F(2,0)為它的一個(gè)焦點(diǎn).
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過點(diǎn)F(2,0)的弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于兩點(diǎn),為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,的面積為,則_________.

查看答案和解析>>

同步練習(xí)冊答案