(本題滿分12分)拋物線經(jīng)過點、,
其中,,設(shè)函數(shù)處取到極值.
(1)用表示;
(2) 比較的大。ㄒ蟀磸男〉酱笈帕校
(3)若,且過原點存在兩條互相垂直的直線與曲線均相切,求的解析式.

(1). (2).
(3).

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)已知,若函數(shù)的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數(shù)的導(dǎo)函數(shù).若,試問:在區(qū)間上是否存在)個正數(shù),使得成立?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)的單調(diào)遞增區(qū)間為,
(Ⅰ)求證:;
(Ⅱ)當(dāng)取最小值時,點是函數(shù)圖象上的兩點,若存在使得,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A、B、C是直線l上的三點,向量、滿足,(O不在直線l上
(1)求的表達(dá)式;
(2)若函數(shù)上為增函數(shù),求a的范圍;
(3)當(dāng)時,求證:的正整數(shù)n成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;
(3)在(2)的條件下,設(shè)關(guān)于的方程的兩個根為、,若對任意
,,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)函數(shù)。
(1)若處取得極值,求的值;
(2)若在定義域內(nèi)為增函數(shù),求的取值范圍;
(3)設(shè),當(dāng)時,
求證:① 在其定義域內(nèi)恒成立;
求證:② 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題分12分)                        
定義.
(Ⅰ)求曲線與直線垂直的切線方程;
(Ⅱ)若存在實數(shù)使曲線點處的切線斜率為,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
已知函數(shù)
(1)判斷函數(shù)上的單調(diào)性;
(2)是否存在實數(shù),使曲線在點處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
 (Ⅰ)若時,函數(shù)在其定義域上是增函數(shù),求b的取值范圍;
 (Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)的最小值;
 (Ⅲ)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于PQ,過線段PQ的中點Rx軸的垂線分別交C1、C2于點MN,問是否存在點R,使C1在M處的切線與C2N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案