若集合,則下列各項(xiàng)正確的是(  )w.w.w.k.s.5.u.c.o.m       

A.        B.         C.   D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•朝陽(yáng)區(qū)二模)設(shè)A是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:
an+an+22
an+1
;     ②an≤M.其中n∈N*,M是與n無關(guān)的常數(shù).
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈A;
(Ⅱ)對(duì)于(Ⅰ)中數(shù)列{an},正整數(shù)n1,n2,…,nt…(t∈N*)滿足7<n1<n2<…<nt<…(t∈N*),并且使得a6,a7,an1,an2,…,ant,…成等比數(shù)列. 若bm=10m-nm(m∈N*),則{bm}∈A是否成立?若成立,求M的取值范圍,若不成立,請(qǐng)說明理由;
(Ⅲ)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈A,證明:cn≤cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:
數(shù)學(xué)公式;   ②an≤M.其中n∈N*,M是與n無關(guān)的常數(shù).
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈A;
(Ⅱ)對(duì)于(Ⅰ)中數(shù)列{an},正整數(shù)n1,n2,…,nt…(t∈N*)滿足7<n1<n2<…<nt<…(t∈N*),并且使得數(shù)學(xué)公式成等比數(shù)列. 若bm=10m-nm(m∈N*),則{bm}∈A是否成立?若成立,求M的取值范圍,若不成立,請(qǐng)說明理由;
(Ⅲ)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈A,證明:cn≤cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:朝陽(yáng)區(qū)二模 題型:解答題

設(shè)A是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:
an+an+2
2
an+1
;     ②an≤M.其中n∈N*,M是與n無關(guān)的常數(shù).
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈A;
(Ⅱ)對(duì)于(Ⅰ)中數(shù)列{an},正整數(shù)n1,n2,…,nt…(t∈N*)滿足7<n1<n2<…<nt<…(t∈N*),并且使得a6,a7,an1,an2,…,ant,…成等比數(shù)列. 若bm=10m-nm(m∈N*),則{bm}∈A是否成立?若成立,求M的取值范圍,若不成立,請(qǐng)說明理由;
(Ⅲ)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈A,證明:cn≤cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)A是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:
;     ②an≤M.其中n∈N*,M是與n無關(guān)的常數(shù).
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈A;
(Ⅱ)對(duì)于(Ⅰ)中數(shù)列{an},正整數(shù)n1,n2,…,nt…(t∈N*)滿足7<n1<n2<…<nt<…(t∈N*),并且使得成等比數(shù)列. 若bm=10m-nm(m∈N*),則{bm}∈A是否成立?若成立,求M的取值范圍,若不成立,請(qǐng)說明理由;
(Ⅲ)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈A,證明:cn≤cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

設(shè)A是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:
;     ②an≤M.其中n∈N*,M是與n無關(guān)的常數(shù).
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈A;
(Ⅱ)對(duì)于(Ⅰ)中數(shù)列{an},正整數(shù)n1,n2,…,nt…(t∈N*)滿足7<n1<n2<…<nt<…(t∈N*),并且使得成等比數(shù)列. 若bm=10m-nm(m∈N*),則{bm}∈A是否成立?若成立,求M的取值范圍,若不成立,請(qǐng)說明理由;
(Ⅲ)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈A,證明:cn≤cn+1

查看答案和解析>>

同步練習(xí)冊(cè)答案