已知梯形ABCD中, AB∥CD, CD在平面α內(nèi), AB∶CD=4∶6, AB到α的距離為10cm, 則梯形對角線的交點(diǎn)O到α的距離為_________cm
答案:6
解析:

解: 如圖1. △AOB相似于△COD.

    過對角線交點(diǎn)O作EF⊥AB,分別與AB,CD交于E、F, 則AB∶CD=EO∶OF

    ∴ EO∶OF=4∶6.

    在圖2中, 過E作EG⊥平面α于G, 過O作OH⊥α于H, 必有G、H、F共線.

    ∴ OH∥EG.

    ∴, 而EG=10cm

    ∴OH=6cm


提示:

提示: 過O作EF⊥AB(CD)與AB, CD交于E, F, 先找出EO∶OF=4∶6. 再作E、O到平面α的垂線段, 可以找出二者之比為6∶10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E分有向線段
.
AC
所成的比為λ,雙曲線過C、D、E三點(diǎn),且以A、B為焦點(diǎn),當(dāng)
2
3
≤λ≤
3
4
時,求雙曲線離心率c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE=x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)x=2時,求證:BD⊥EG;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(3)當(dāng)f(x)取得最大值時,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,沿EF將梯形ABCD翻折,使AE⊥平面EBCF(如圖).設(shè)AE=x,四面體DFBC的體積記為f(x).
(1)寫出f(x)表達(dá)式,并求f(x)的最大值;
(2)當(dāng)x=2時,求異面直線AB與DF所成角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE=x.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF(如圖).G是BC的中點(diǎn),以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x).
(1)當(dāng)x=2時,求證:BD⊥EG;
(2)求f(x)的最大值;
(3)當(dāng)f(x)取得最大值時,求異面直線AE與BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD內(nèi),過C作l⊥CB,以l為軸將梯形ABCD旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積及體積.

查看答案和解析>>

同步練習(xí)冊答案