【題目】2014年7月16日,中國互聯(lián)網(wǎng)絡(luò)信息中心發(fā)布《第三十四次中國互聯(lián)網(wǎng)發(fā)展?fàn)顩r報告》,報告顯示:我國網(wǎng)絡(luò)購物用戶已達億.為了了解網(wǎng)購者一次性購物金額情況,某統(tǒng)計部門隨機抽查了6月1日這一天100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表.已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為

(Ⅰ)確定, , 的值;

(Ⅱ)為進一步了解網(wǎng)購金額的多少是否與網(wǎng)齡有關(guān),對這100名網(wǎng)購者調(diào)查顯示:購物金額在2000元以上的網(wǎng)購者中網(wǎng)齡3年以上的有35人,購物金額在2000元以下(含2000元)的網(wǎng)購者中網(wǎng)齡不足3年的有20人.

①請將列聯(lián)表補充完整;

網(wǎng)齡3年以上

網(wǎng)齡不足3年

合計

購物金額在2000元以上

35

購物金額在2000元以下

20

合計

100

②并據(jù)此列聯(lián)表判斷,是否有%的把握認為網(wǎng)購金額超過2000元與網(wǎng)齡在三年以上有關(guān)?

參考數(shù)據(jù):

(參考公式: ,其中

【答案】(Ⅰ), ;(Ⅱ)見解析.

【解析】試題分析:(Ⅰ)由網(wǎng)購金額在2000元以上(不含2000元)的頻率為,得,進而根據(jù)表格的每一列總數(shù)可求解;

(Ⅱ)①根據(jù)題中提供數(shù)據(jù)一次填入表格即可;

②由數(shù)據(jù)可得列聯(lián)表,利用公式,可得結(jié)論.

試題解析:

(Ⅰ)因為網(wǎng)購金額在2000元以上的頻率為,

所以網(wǎng)購金額在2000元以上的人數(shù)為100=40

所以,所以, ,

所以.

(Ⅱ)由題設(shè)列聯(lián)表如下

網(wǎng)齡3年以上

網(wǎng)齡不足3年

合計

購物金額在2000元以上

35

5

40

購物金額在2000元以下

40

20

60

合計

75

25

100

所以=.

因為

所以據(jù)此列聯(lián)表判斷,有%的把握認為網(wǎng)購金額超過2000元與網(wǎng)齡在三年以上有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù) 在(﹣∞,+∞)上有極值,命題q:雙曲線 的離心率e∈(1,2).若p∨q是真命題,p∧q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=﹣ x3+ x2+2ax.
(1)當(dāng)a=1時,求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的頂點分別為A(﹣1,3),B(3,2),C(1,0)
(1)求BC邊上高的長度;
(2)若直線l過點C,且在l上不存在到A,B兩點的距離相等的點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線的焦點,點在拋物線上,且

(1)求拋物線的方程;

(2)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評分在[40,60)的師生中,隨機抽取2人,求此人中恰好有1人評分在[40,50)上的概率;
(3)學(xué)校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進行內(nèi)部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進行內(nèi)部整頓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于 兩點,直線, 分別與軸交于點

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左右焦點分別是,直線與橢圓交于兩點,當(dāng)時, 恰為橢圓的上頂點,此時的面積為6.

(1)求橢圓的方程;

2)設(shè)橢圓的左頂點為,直線與直線分別相交于點,問當(dāng)變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)求證:當(dāng)a>2時, + <2 ; (Ⅱ)證明:2, ,5不可能是同一個等差數(shù)列中的三項.

查看答案和解析>>

同步練習(xí)冊答案