雙曲線=1的漸近線方程為________.

 

y=±2x

【解析】∵a=2,b=4,∴雙曲線的漸近線方程為y=±2x.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第十一章第4課時練習(xí)卷(解析版) 題型:解答題

一盒中有9個正品和3個次品零件,每次取一個零件,如果取出的是次品不再放回,求在取得正品前已取出的次品數(shù)X的概率分布,并求P.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第9課時練習(xí)卷(解析版) 題型:解答題

拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個點到準(zhǔn)線x=-2的距離都與到定點N的距離相等,圓N是以N為圓心,同時與直線l1:y=x和l2:y=-x相切的圓,

(1)求定點N的坐標(biāo);

(2)是否存在一條直線l同時滿足下列條件:

①l分別與直線l1和l2交于A、B兩點,且AB中點為E(4,1);

②l被圓N截得的弦長為2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

已知雙曲線x2-y2=1,點F1,F(xiàn)2為其兩個焦點,點P為雙曲線上一點,若PF1⊥PF2,則PF1+PF2=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的兩條漸近線方程為y=±x,若頂點到漸近線的距離為1,求雙曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第7課時練習(xí)卷(解析版) 題型:解答題

已知橢圓=1(a>b>0),點P在橢圓上.

(1)求橢圓的離心率;

(2)設(shè)A為橢圓的左頂點,O為坐標(biāo)原點.若點Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第7課時練習(xí)卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2=(c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1)若橢圓C經(jīng)過兩點、,求橢圓C的方程;

(2)當(dāng)c為定值時,求證:直線MN經(jīng)過一定點E,并求·的值(O是坐標(biāo)原點);

(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

已知F1、F2是橢圓C的左、右焦點,點P在橢圓上,且滿足PF1=2PF2,∠PF1F2=30°,則橢圓的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:填空題

圓x2+y2-4x=0在點P(1,)處的切線方程為________.

 

查看答案和解析>>

同步練習(xí)冊答案