4.中國古代數(shù)學(xué)名著《算法統(tǒng)宗》中,許多數(shù)學(xué)問題都是以詩歌的形式呈現(xiàn),其中一首詩可改編如下:“甲乙丙丁戊,酒錢欠千文,甲兄告乙弟,三百我還與,轉(zhuǎn)差十幾文,各人出怎?”意為:五兄弟,酒錢欠千文,甲還三百,甲乙丙丁戊還錢數(shù)依次成等差數(shù)列,在這個問題中丁該還150文錢.

分析 依題意甲、乙、丙、丁、戊還錢數(shù)組成以300為首項,d為公差的等差數(shù)列,利用條件求出d,則答案可求.

解答 解:依題意甲、乙、丙、丁、戊還錢數(shù)組成以300為首項,d為公差的等差數(shù)列,
又300×5+$\frac{5×4}{2}d$=1000,∴d=50,
則丁還錢數(shù)300-150=150.
故答案為150.

點評 本題考查等差數(shù)列的通項公式,考查學(xué)生利用數(shù)學(xué)知識解決實際問題,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|2x+1|.
(1)解不等式:f(x)≥x+3;
(2)若不等式f(x)-2|x-1|≥m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={-2,-1,0,1,2},集合B={x|x2≤1},A∩B=( 。
A.{-2,-1,0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的方程為y=x+2,點P是拋物線y2=4x上到直線l距離最小的點,點A是拋物線上異于點P的點,直線AP與直線l交于點Q,過點Q與x軸平行的直線與拋物線y2=4x交于點B.
(Ⅰ)求點P的坐標(biāo);
(Ⅱ)證明直線AB恒過定點,并求這個定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=x+yi(x,y∈R)滿足$|{\overline z}|≤1$,則y≥x-1的概率為( 。
A.$\frac{3}{4}-\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{3}{4}+\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖在棱錐P-ABCD中,ABCD為矩形,PD⊥面ABCD,PB=2,PB與面PCD成45°角,PB與面ABD成30°角.
(1)在PB上是否存在一點E,使PC⊥面ADE,若存在確定E點位置,若不存在,請說明理由;
(2)當(dāng)E為PB中點時,求二面角P-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.住在狗熊嶺的7只動物,它們分別是熊大,熊二,吉吉,毛毛,蹦蹦,蘿卜頭,圖圖.為了更好的保護(hù)森林,它們要選出2只動物作為組長,則熊大,熊二至少一個被選為組長的概率為( 。
A.$\frac{11}{42}$B.$\frac{1}{2}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在直角坐標(biāo)系xOy中,設(shè)集合Ω={(x,y)|0≤x≤2,0≤y≤1},在區(qū)域Ω內(nèi)任取一點P(x,y),則滿足x+y≥1的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD與
平面ABCD所成的角依次是$\frac{π}{4}$和$arctan\frac{1}{2}$,AP=2,E、F依次是PB、PC的中點;
(1)求異面直線EC與PD所成角的大;(結(jié)果用反三角函數(shù)值表示)
(2)求三棱錐P-AFD的體積.

查看答案和解析>>

同步練習(xí)冊答案