【題目】設(shè)三位數(shù),若以為三條邊的長可以構(gòu)成一個(gè)等腰(含等邊)三角形,則這樣的位數(shù)(  )

A.45個(gè) B81個(gè) C165個(gè) D216個(gè)

【答案】C

【解析】

試題要能構(gòu)成三角形的邊長,顯然均不為0。即
(1)若構(gòu)成等邊三角形,設(shè)這樣的三位數(shù)的個(gè)數(shù)為,由于三位數(shù)中三個(gè)數(shù)碼都相同,所以

(2)若構(gòu)成等腰(非等邊)三角形,設(shè)這樣的三位數(shù)的個(gè)數(shù)為,由于三位數(shù)中只有2個(gè)不同數(shù)碼.設(shè)為,注意到三角形腰與底可以置換,所以可取的數(shù)碼組共有.但當(dāng)大數(shù)為底時(shí),設(shè),必須滿足。此時(shí),不能構(gòu)成三角形的數(shù)碼是

a

9

8

7

6

5

4

3

2

1

b

4,3
2,1

4,3
2,1

3,2
1

3,2
1

1,2

1,2

1

1

共20種情況。 同時(shí),每個(gè)數(shù)碼組中的二個(gè)數(shù)碼填上三個(gè)數(shù)位,有種情況。
. 綜上,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動圓與圓外切,與圓內(nèi)切.

1)求動圓圓心的軌跡方程;

2)直線過點(diǎn)且與動圓圓心的軌跡交于、兩點(diǎn).是否存在面積的最大值,若存在,求出的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, ,,是線段的中點(diǎn).

(1)證明:平面

(2)當(dāng)為何值時(shí),四棱錐的體積最大?并求此最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足,.數(shù)列的前項(xiàng)和為,則滿足的最小的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為.過焦點(diǎn)且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在直線與橢圓相交于兩點(diǎn),使得?若存在,求的取值范圍;若不存在,請說明理由!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O經(jīng)過橢圓C=1ab0)的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)(b,)在橢圓C上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且|MN|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且 )曲線的參數(shù)方程為為參數(shù),且),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: ,曲線的極坐標(biāo)方程為.

(1)求的交點(diǎn)到極點(diǎn)的距離;

(2)設(shè)交于點(diǎn),交于點(diǎn),當(dāng)上變化時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.

其中正確的有____________(把所有正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為雙曲線的頂點(diǎn),直線與橢圓交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為,點(diǎn)Р是橢圓上異于A,B的任意一點(diǎn),點(diǎn)Q滿足,,且A,B,Q三點(diǎn)不共線.

1)求橢圓的方程;

2)求點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案