(本小題滿(mǎn)分14分)已知數(shù)列滿(mǎn)足,,。
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列通項(xiàng)公式;
(2) 數(shù)列的前項(xiàng)和為 ,令,求的最小值。

(1)作差再同除以,即可證明為等差數(shù)列,
(2)最小值為

解析試題分析:(1),
,即,                                        ……4分
數(shù)列是公差為1,首項(xiàng)為1等差數(shù)列.                                      ……5分
    
.                                                       ……7分
(2)=,                                       ……9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/11/5/1vwc44.png" style="vertical-align:middle;" />,
所以單調(diào)遞增,                                                           ……12分
, 的最小值為.                                              ……14分
考點(diǎn):本小題主要考查等差數(shù)列的證明,數(shù)列求和.
點(diǎn)評(píng):由遞推關(guān)系式求通項(xiàng)公式時(shí)一般都再寫(xiě)一個(gè)作差,然后用累加、累乘或構(gòu)造新數(shù)列解決問(wèn)題.而數(shù)列求和也是高考必考的一個(gè)內(nèi)容,要好好掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}中,a2=1,前n項(xiàng)和為Sn,且
(1)求a1,a3;
(2)求證:數(shù)列{an}為等差數(shù)列,并寫(xiě)出其通項(xiàng)公式;
(3)設(shè),試問(wèn)是否存在正整數(shù)p,q(其中1<p<q),使b1,bp,bq成等比數(shù)列?若存在,求出所有滿(mǎn)足條件的數(shù)組(p,q);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿(mǎn)分13分)已知各項(xiàng)均為正數(shù)的數(shù)列是數(shù)列的前n項(xiàng)和,對(duì)任意,有2Sn=2
(Ⅰ)求常數(shù)p的值; 
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記,()若數(shù)列從第二項(xiàng)起每一項(xiàng)都比它的前一項(xiàng)大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程N的兩根,且.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 設(shè)是數(shù)列的前項(xiàng)和, 問(wèn)是否存在常數(shù),使得對(duì)任意N都成立,若存在, 求出的取值范圍; 若不存在, 請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)a2,a5是方程x 2-12x+27=0的兩根,數(shù)列{}是公差為正數(shù)的等差數(shù)列,數(shù)列{}的前n項(xiàng)和為,且=1-
(1)求數(shù)列{},{}的通項(xiàng)公式;
(2)記,求數(shù)列{}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列項(xiàng)和滿(mǎn)足,等差數(shù)列滿(mǎn)足
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè),數(shù)列的前項(xiàng)和為,問(wèn)的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義數(shù)列,(例如時(shí),)滿(mǎn)足,且當(dāng))時(shí),.令
(1)寫(xiě)出數(shù)列的所有可能的情況;(5分)
(2)設(shè),求(用的代數(shù)式來(lái)表示);(5分)
(3)求的最大值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)
已知數(shù)列的前項(xiàng)和滿(mǎn)足,等差數(shù)列滿(mǎn)足,。
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,問(wèn)>的最小正整數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

本小題滿(mǎn)分16分)設(shè)不等式組所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/3/zpbpx.png" style="vertical-align:middle;" />,記內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為
(1)求的值及的表達(dá)式;
(2)記,試比較的大;若對(duì)于一切的正整數(shù),總有成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)為數(shù)列的前項(xiàng)的和,其中,問(wèn)是否存在正整數(shù),使成立?若存在,求出正整數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案