【題目】(題文)已知函數(shù).

(1)若曲線處的切線與直線垂直,求的值;

(2)討論函數(shù)的單調(diào)性;若存在極值點,求實數(shù)的取值范圍.

【答案】(1)(2)單調(diào)性見解析,

【解析】

試題分析:(1)由切線斜率就是切點導數(shù)值,易知;(2)求導,分正負兩類討論,得單調(diào)性,所以解得的取值范圍為

試題解析:

(Ⅰ)依題意,,所以,

因為與直線垂直,得,解得

(Ⅱ)因為

時,上恒成立,所以的單調(diào)遞增區(qū)間為,無遞減區(qū)間;

時,由,解得;

,,解得;

,,解得

此時的單調(diào)遞增區(qū)間為,的單調(diào)遞減區(qū)間為

綜上所述,當時,的單調(diào)遞增區(qū)間為,無遞減區(qū)間;

時,的單調(diào)遞增區(qū)間為,的單調(diào)遞減區(qū)間為

若存在極值點,由函數(shù)的單調(diào)性知,;

,解得

所以所求實數(shù)的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系內(nèi),點實施變換后,對應(yīng)點為,給出以下命題:

①圓上任意一點實施變換后,對應(yīng)點的軌跡仍是圓

②若直線上每一點實施變換后,對應(yīng)點的軌跡方程仍是

③橢圓上每一點實施變換后,對應(yīng)點的軌跡仍是離心率不變的橢圓;

④曲線上每一點實施變換后,對應(yīng)點的軌跡是曲線是曲線上的任意一點,是曲線上的任意一點,則的最小值為.

以上正確命題的序號是___________________(寫出全部正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若,則稱的“不動點”,若,則稱的“穩(wěn)定點”,函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即,那么,

(1)求函數(shù)的“穩(wěn)定點”;

(2)求證:;

(3)若,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),當0<x<2時,f(x)=4x , 則f(﹣ )+f(2)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)準備將閑置的一直角三角形地塊開發(fā)成公共綠地,圖中.設(shè)計時要求綠地部分(如圖中陰影部分所示)有公共綠地走道,且兩邊是兩個關(guān)于走道對稱的三角形().現(xiàn)考慮方便和綠地最大化原則,要求點與點均不重合,落在邊上且不與端點重合,設(shè).

(1)若,求此時公共綠地的面積;

(2)為方便小區(qū)居民的行走,設(shè)計時要求的長度最短,求此時綠地公共走道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),將的圖象向右平移兩個單位長度,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個實根,求的取值范圍;

(3)若函數(shù)的圖象關(guān)于直線對稱,設(shè),已知對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且c= asinC﹣ccosA
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

如圖,四棱錐的底面為菱形,平面,

分別為的中點,

)求證:平面平面

)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市理論預(yù)測2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示

年份2010+x(年)

0

1

2

3

4

人口數(shù)y(十萬)

5

7

8

11

19

(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2) 據(jù)此估計2015年該城市人口總數(shù)。

查看答案和解析>>

同步練習冊答案