【題目】如圖,平行四邊形ABCD中,,E、F分別為AD,BC的中點(diǎn).以EF為折痕把四邊形EFCD折起,使點(diǎn)C到達(dá)點(diǎn)M的位置,點(diǎn)D到達(dá)點(diǎn)N的位置,且.
(1)求證:平面NEB;
(2)若,求二面角的余弦值.
【答案】(1)見解析(2).
【解析】
(1)記,連接NO,證明即可證明結(jié)論;
(2)先證明平面ABFE,再以直線OE為x軸,直線OA為y軸,直線ON為軸建立空間直角坐標(biāo)系,求出平面MBE的法向量,平面NBE的一個(gè)法向量,代入向量的夾角公式,即可求得二面角的余弦值.
(1)證明:記,連接NO,
可知四邊形ABFE是菱形,所以,且O為AF,BE的中點(diǎn),
又,所以,
又因?yàn)?/span>,NO,平面NEB,
所以平面NEB.
(2)因?yàn)?/span>,所以,,
所以,
所以,
所以,所以,
又由(1)可知:,且,AF,平面ABFE,
所以平面ABFE,以直線OE為x軸,直線OA為y軸,直線ON為軸建立空間直角坐標(biāo)系,
則,,,,,
所以,所以,,
設(shè)是平面MBE的法向量,則
,取,得,
又平面NBE的一個(gè)法向量為,
所以,
所以二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)和函數(shù).
(1)若曲線在處的切線過點(diǎn),求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對于任意的恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,分別是棱上的點(diǎn)(點(diǎn)不同于點(diǎn)),且,為棱上的點(diǎn),且.
求證:(1)平面平面;
(2)平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線上任意一點(diǎn)(異于頂點(diǎn))與雙曲線兩頂點(diǎn)連線的斜率之積為.
(I)求雙曲線漸近線的方程;
(Ⅱ)過橢圓上任意一點(diǎn)P(P不在C的漸近線上)分別作平行于雙曲線兩條漸近線的直線,交兩漸近線于兩點(diǎn),且,是否存在使得該橢圓的離心率為,若存在,求出橢圓方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正實(shí)數(shù)a,b,c滿足a3+b3+c3=1.
(Ⅰ)證明:a+b+c≥(a2+b2+c2)2;
(Ⅱ)證明:a2b+b2c+c2a≤1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDE中,DE∥AB,AC⊥BC,BC=2AC=2,AB=2DE,且D點(diǎn)在平面ABC內(nèi)的正投影為AC的中點(diǎn)H且DH=1.
(1)證明:面BCE⊥面ABC
(2)求BD與面CDE夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動點(diǎn) 在直線,(為長半軸,為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N.求證:線段ON的長為定值,并求出這個(gè)定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com