年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ak |
12 |
an |
ak |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | ||
|
1 | ||
|
1 | ||
|
d2 |
2 |
d3 |
3 |
dn |
n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)個正數(shù)排成一個行列的數(shù)陣:
第1列 | 第2列 | 第3列 | … | 第列 | |
第1行 | … | ||||
第2行 | … | ||||
第3行 | … | ||||
… | … | … | … | … | … |
第行 | … |
其中表示該數(shù)陣中位于第行第列的數(shù)。已知該數(shù)陣每一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,
(1)求; (2)設(shè),求;
(3)在(2)的條件下,若不等式對任意的恒成立,求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江杭州七校高二下期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式對任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當(dāng)時,;當(dāng)時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時,,成立.
假設(shè)當(dāng)時,不等式成立,
當(dāng)時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式, …………10分
, …………12分
所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com