(本小題滿分13分)已知函數(shù)
(1)畫出函數(shù)的圖象;
(2)利用圖象回答:當(dāng)為何值時,方程有一個解?有兩個解?有三個解?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)若實數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域為R,對任意,均有
,且對任意都有。
(1)試證明:函數(shù)在R上是單調(diào)函數(shù);
(2)判斷的奇偶性,并證明。
(3)解不等式。
(4)試求函數(shù)在上的值域;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分,第1小題6分,第小題6分)
設(shè)函數(shù)的定義域為集合A,函數(shù)的定義域為集合B。
(1)求A∩B;
(2)若,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的單調(diào)函數(shù)滿足,且對于任意的,
都有.
(1)求證:為奇函數(shù);
(2)若對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的定義域為(0,+∞),且對任意正實數(shù)x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1時f(x)>0.
(1)求;
(2)判斷y=f(x)在(0,+ ∞)上的單調(diào)性;
(3)一個各項均為正數(shù)的數(shù)列其中sn是數(shù)列的前n項和,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè),函數(shù).
(Ⅰ)若是函數(shù)的極值點,求實數(shù)的值;
(Ⅱ)若函數(shù)在上是單調(diào)減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com