,構(gòu)造一個(gè)數(shù)列發(fā)生器,其工作原理如下:
輸入數(shù)據(jù),經(jīng)數(shù)列發(fā)生器輸出,若,則數(shù)列發(fā)生器結(jié)束工作,
,則將反饋回輸入端,再輸出并依此規(guī)律繼續(xù)下去,若輸入時(shí),產(chǎn)生的無(wú)窮數(shù)列滿足,對(duì)任意正整數(shù)均有,求范圍
要使,則
對(duì)于函數(shù),若,則
,則,依此類推,可得數(shù)列滿足
此時(shí),綜上所述,取值范圍是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,且滿足,
(Ⅰ)求, ,并猜想的表達(dá)式;
(Ⅱ)用數(shù)學(xué)歸納法證明所得的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)
在數(shù)列中,
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列滿足:
(I)求得值;
(II)設(shè)求證:數(shù)列是等比數(shù)列,并求出其通項(xiàng)公式;
(III)對(duì)任意的,在數(shù)列中是否存在連續(xù)的項(xiàng)構(gòu)成等差數(shù)列?若存在,寫(xiě)出這項(xiàng),并證明這項(xiàng)構(gòu)成等差數(shù)列;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無(wú)效)
已知數(shù)列的前項(xiàng)和為,且滿足
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)求為數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為,為等比數(shù)列, ,且 
(1)求;
(2)求數(shù)列的前項(xiàng)和。
(3)若對(duì)任意正整數(shù)和任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的前項(xiàng)的和,某同學(xué)得出如下三個(gè)結(jié)論:①的通項(xiàng)是;②是等比數(shù)列;③當(dāng)時(shí),
其中正確結(jié)論的個(gè)數(shù)為(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從1=1,,,…歸納出第個(gè)式子為_(kāi)______________________.                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列是公差為的等差數(shù)列,其前項(xiàng)和為,并有;那么,對(duì)于公比為的等比數(shù)列,設(shè)其前項(xiàng)積為,則,滿足的一個(gè)關(guān)系式是                                 .

查看答案和解析>>

同步練習(xí)冊(cè)答案