【題目】已知數(shù)列滿足,.求證:當(dāng)時(shí),
(Ⅰ);
(Ⅱ)當(dāng)時(shí),有;
(Ⅲ)當(dāng)時(shí),有.
【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析
【解析】
(Ⅰ)通過數(shù)學(xué)歸納法,即可證明;
(Ⅱ)先通過構(gòu)造函數(shù),利用其單調(diào)性,對(duì)遞推公式放縮,得到,再利用累乘法即可證明;
(Ⅲ)通過構(gòu)造函數(shù),由導(dǎo)數(shù)證明在上恒成立,從而得,再根據(jù)放縮法可得,變形得到,由累乘法即可證出.
(Ⅰ)用數(shù)學(xué)歸納法進(jìn)行證明.
①當(dāng)時(shí),成立;
②假設(shè)當(dāng)時(shí),有成立,則當(dāng)時(shí),有,又,故,綜上,可知當(dāng)時(shí),均有.
(Ⅱ)設(shè),則恒成立,在上單調(diào)遞增,所以,即.
因?yàn)?/span>,即,
當(dāng)時(shí),由累乘法可得,,
又,即,所以;
因?yàn)?/span>,即,
當(dāng)時(shí),由累乘法可得,,
又,即,所以,
故當(dāng)時(shí),有;
(Ⅲ)由(Ⅱ)可知, ,即,且.
設(shè),恒成立,
在上單調(diào)遞增,所以,所以,
因?yàn)?/span>,
即,且,
所以,即,
故有,變形為,
當(dāng)時(shí),所以,
又,即,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面
(I)求證:;
(II)若M為中點(diǎn),求證:平面;
(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c,d∈R,矩陣A= 的逆矩陣A-1=.若曲線C在矩陣A對(duì)應(yīng)的變換作用下得到直線y=2x+1,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn),、兩點(diǎn)分別是橢圓的上、下頂點(diǎn),是等腰直角三角形,延長交橢圓于點(diǎn),且的周長為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上異于、的動(dòng)點(diǎn),直線、與直線分別相交于、兩點(diǎn),點(diǎn),試問:外接圓是否恒過軸上的定點(diǎn)(異于點(diǎn))?若是,求該定點(diǎn)坐標(biāo);若否,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎正在全球蔓延,對(duì)世界經(jīng)濟(jì)影響嚴(yán)重,中國疫情防控,復(fù)工復(fù)學(xué)恢復(fù)經(jīng)濟(jì)成為各國的榜樣,綿陽某商場(chǎng)在五一勞動(dòng)節(jié)期間舉行促銷活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從3種服裝商品、2種家電、4種日用商品中,選出3種商品進(jìn)行促銷活動(dòng).
(1)試求選出的3種商品至少有2種服裝商品的概率;
(2)商場(chǎng)對(duì)選的A商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高300元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金,假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等概率的,請(qǐng)問:商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷方案對(duì)自己有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在脫貧攻堅(jiān)中,某市教育局定點(diǎn)幫扶前進(jìn)村戶貧困戶.駐村工作隊(duì)對(duì)這戶村民的貧困程度以及家庭平均受教育程度進(jìn)行了調(diào)査,并將該村貧困戶按貧困程度分為“絕對(duì)貧困戶”與“相對(duì)貧困戶”,同時(shí)按家庭平均受教育程度分為“家庭平均受教育年限年”與“家庭平均受教育年限年”,具體調(diào)査結(jié)果如下表所示:
平均受教育年限年 | 平均受教育年限年 | 總計(jì) | |
絕對(duì)貧困戶 | 10 | 40 | 50 |
相對(duì)貧困戶 | 20 | 30 | 50 |
總計(jì) | 30 | 70 | 100 |
(1)為了參加扶貧辦公室舉辦的貧困戶“談心談話”活動(dòng),現(xiàn)通過分層抽樣從“家庭平均受教育年限年”的戶貧困戶中任意抽取戶,再從所抽取的戶中隨機(jī)抽取戶參加“談心談話”活動(dòng),求至少有戶是絕對(duì)貧困戶的概率;
(2)根據(jù)上述表格判斷:是否有的把握認(rèn)為貧困程度與家庭平均受教育程度有關(guān)?
參考公式:
參考數(shù)據(jù):
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,平面⊥平面,是以為斜邊的等腰直角三角形,,,,為的中點(diǎn).
(1)證明:;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是我國大陸地區(qū)從2013年至2019年國內(nèi)生產(chǎn)總值(GDP)近似值(單位:萬億元人民幣)的數(shù)據(jù)表格:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
中國大陸地區(qū)GDP: (單位:萬億元人民幣) |
關(guān)于的線性回歸方程(系數(shù)精確到);
(Ⅱ)黨的十九大報(bào)告中指出:從2020年到2035年,在全面建成小康社會(huì)的基礎(chǔ)上,再奮斗15年,基本實(shí)視社會(huì)主義現(xiàn)代化.若到2035年底我國人口增長為億人,假設(shè)到2035年世界主要中等發(fā)達(dá)國家的人均國民生產(chǎn)總值的頻率直方圖如圖所示.
以(Ⅰ)的結(jié)論為依據(jù),預(yù)測(cè)我國在2035年底人均國民生產(chǎn)總值是否可以超過假設(shè)的2035年世界主要中等發(fā)達(dá)國家的人均國民生產(chǎn)總值平均數(shù)的估計(jì)值.
參考數(shù)據(jù):,.
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知真命題:“函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱圖形”的充要條件為“函數(shù)是奇函數(shù)”.
(Ⅰ)將函數(shù)的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)圖象對(duì)稱中心的坐標(biāo);
(Ⅱ)求函數(shù)圖象對(duì)稱中心的坐標(biāo);
(Ⅲ)已知命題:“函數(shù)的圖象關(guān)于某直線成軸對(duì)稱圖象”的充要條件為“存在實(shí)數(shù)和,使得函數(shù)是偶函數(shù)”.判斷該命題的真假.如果是真命題,請(qǐng)給予證明;如果是假命題,請(qǐng)說明理由,并類比題設(shè)的真命題對(duì)它進(jìn)行修改,使之成為真命題(不必證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com