“(x-2)(x+1)≥0”是“
x-2
x+1
≥0”的
 
條件(充分不必要、必要不充分、充要、既不充分又不必要).
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:現(xiàn)將兩命題化簡,然后判斷充要性.
解答: 解:“(x-2)(x+1)≥0”?“x≤-1或x≥2”,
x-2
x+1
≥0”?“x<-1或x≥2”,
則“(x-2)(x+1)≥0”是“
x-2
x+1
≥0”的必要不充分條件,
故答案為:必要不充分.
點(diǎn)評:本題考查充要條件,注意規(guī)律“小能推大,大不能推小”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(2,1)與(1,2)在函數(shù)f(x)=2ax+b的圖象上,求f(x)的解析式,并畫出f(x)的草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2012年10月莫言獲得諾貝爾文學(xué)獎(jiǎng)后,其家鄉(xiāng)山東高密政府準(zhǔn)備投資6.7億元打造旅游帶,包括莫言舊居周圍的莫言文化體驗(yàn)區(qū),紅高粱文化休閑區(qū),愛國主義教育基地等;為此某文化旅游公司向社會公開征集旅游帶建設(shè)方案,在收到的方案中甲、乙、丙三個(gè)方案引起了專家評委的注意,現(xiàn)已知甲、乙、丙三個(gè)方案能被選中的概率分別為
2
5
,
3
4
1
3
,且假設(shè)各自能否被選中是無關(guān)的.
(1)求甲、乙、丙三個(gè)方案只有兩個(gè)被選中的概率;
(2)記甲、乙、丙三個(gè)方案被選中的個(gè)數(shù)為ξ,試求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列正確結(jié)論的序號是
 

①連續(xù)函數(shù)f(x)在區(qū)間(a,b)上有零點(diǎn)的充要條件為f(a)•f(b)<0;
②若函數(shù)y=f(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y=
1
2
x+2,則f(1)+f′(1)=3;
③對?x>0,不等式2x+
1
2x
-a>0恒成立,則實(shí)數(shù)a的取值范圍為(-∞,2);
④若f(x)=x5+x4+x3+2x+1,則f(2)的值用二進(jìn)制表示為111101.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個(gè)區(qū)間(0,k)(k是一個(gè)給定的正實(shí)數(shù))到實(shí)數(shù)集R的對應(yīng)過程:區(qū)間(0,k)中的實(shí)數(shù)m對應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB彎成半圓弧,圓心為H,如圖2;再將這個(gè)半圓置于直角坐標(biāo)系中,使得圓心H坐標(biāo)為(0,1),直徑AB平行x軸,如圖3;在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的圓弧AM的長度,直線HM與直線y=-1相交與點(diǎn)N(n,-1),則與實(shí)數(shù)m對應(yīng)的實(shí)數(shù)就是n,記作n=f(m).給出下列命題:
(1)f(
k
4
)=6;
(2)函數(shù)n=f(m)是奇函數(shù);
(3)n=f(m)是定義域上的單調(diào)遞增函數(shù);
(4)n=f(m)的圖象關(guān)于點(diǎn)(
k
2
,0)對稱;
(5)方程f(m)=2的解是m=
3
4
k.
其中正確命題序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐P-ABCD的棱長都相等,側(cè)棱PB、PD的中點(diǎn)分別為M、N,則截面AMN與底面ABCD所成的二面角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,D是AB中點(diǎn),(直三棱柱,指側(cè)棱垂直于底面的棱柱).
(1)求證:AC⊥BC1; 
(2)求證:AC1∥平面CDB1
(3)求點(diǎn)C到平面ABC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°側(cè)面PAD⊥底面ABCD.E、F分別為AD、PA中點(diǎn).
(1)求證:PD∥平面CEF;
(2)求證:平面CEF⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(k+
4
k
)lnx+
4-x2
x
,其中常數(shù) k>0.
(1)討論f(x)在(0,2)上的單調(diào)性;
(2)若k∈[4,+∞),曲線y=f(x)上總存在相異兩點(diǎn)M(x1,y1),N(x2,y2)使得曲線y=f(x)在M,N兩點(diǎn)處切線互相平行,求x1+x2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案