【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)

是棱的中點(diǎn),平面與棱交于點(diǎn).

1求證:

2,且平面平面,求平面與平面所成的銳二面角的余弦值.

【答案】1證明見(jiàn)解析;2.

【解析】

試題分析:對(duì)1,先根據(jù)菱形的性質(zhì)得到,進(jìn)而得到,接下來(lái)根據(jù)四點(diǎn)共面,且平面平面,即可得到結(jié)論;對(duì)于2,取中點(diǎn),連接,根據(jù)等腰三角形的性質(zhì)以及線面垂直的知識(shí)得到,進(jìn)而根據(jù)菱形的性質(zhì)得到,建立空間直角坐標(biāo)系,利用向量運(yùn)算解決.

試題解析:1證明:因?yàn)榈酌?/span>是菱形,所以.

又因?yàn)?/span>,所以.

又因?yàn)?/span>四點(diǎn)共面,且平面平面,

所以.

2中點(diǎn),連接.因?yàn)?/span>,所以.又因?yàn)槠矫?/span>平面,且平面平面, 所以平面.所以.在菱形中,因?yàn)?/span>中點(diǎn),所以.

如圖,建立空間直角坐標(biāo)系.設(shè)

.

又因?yàn)?/span>,點(diǎn)是棱中點(diǎn),所以點(diǎn)是棱中點(diǎn).所以.所以.

設(shè)平面的法向量為,則有所以

,則平面的一個(gè)法向量為.

因?yàn)?/span>平面,所以是平面的一個(gè)法向量.

因?yàn)?/span>

所以平面與平面所成的銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線.

)求圓的標(biāo)準(zhǔn)方程;

)設(shè)直線經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知有窮數(shù)列:,,……,的各項(xiàng)均為正數(shù),且滿足條件:

;.

(1)若,求出這個(gè)數(shù)列;

(2)若,求的所有取值的集合;

(3)若是偶數(shù),求的最大值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y118,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2(注:利潤(rùn)與投資金額單位:萬(wàn)元).

(1)該公司已有100萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把AB兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫(xiě)出定義域;

(2)在(1)的條件下,試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為, 成等差數(shù)列。

(1證明為等比數(shù)列,并求數(shù)列的通項(xiàng);

(2)設(shè),且,證明。

(3)在(2)小問(wèn)的條件下,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過(guò)坐標(biāo)原點(diǎn)且圓心在曲線上.

(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;

(3)設(shè)直線(2)中所求圓交于點(diǎn), 為直線上的動(dòng)點(diǎn),直線,與圓的另一個(gè)交點(diǎn)分別為,,且,在直線異側(cè),求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中有高一新生500名,分成水平相同的兩類(lèi)教學(xué)實(shí)驗(yàn),為對(duì)比教學(xué)效果,現(xiàn)用分層抽樣的方法從兩類(lèi)學(xué)生中分別抽取了40人,60人進(jìn)行測(cè)試

1)求該學(xué)校高一新生兩類(lèi)學(xué)生各多少人?

2)經(jīng)過(guò)測(cè)試,得到以下三個(gè)數(shù)據(jù)圖表:

175分以上兩類(lèi)參加測(cè)試學(xué)生成績(jī)的莖葉圖

2100名測(cè)試學(xué)生成績(jī)的頻率分布直方圖

下圖表格:100名學(xué)生成績(jī)分布表:

先填寫(xiě)頻率分布表中的六個(gè)空格,然后將頻率分布直方圖(圖2)補(bǔ)充完整;

該學(xué)校擬定從參加考試的79分以上(含79分)的類(lèi)學(xué)生中隨機(jī)抽取2人代表學(xué)校參加市比賽,求抽到的2人分?jǐn)?shù)都在80分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表,其中《方田》章有弧田面積計(jì)算問(wèn)題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公

式為:弧田面積=,弧田是由圓。ê(jiǎn)稱(chēng)為弧田。┖鸵詧A

弧的兩端為頂點(diǎn)的線段(簡(jiǎn)稱(chēng)為弧田弦)圍成的平面圖形,公式中“弦”指的是弧

田弦的長(zhǎng),“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧

田,其弦長(zhǎng)AB等于6米,其弧所在圓為圓O,若用上述弧田面積計(jì)算公式算得該

弧田的面積為平方米,則cos∠AOB= ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案