完成反證法證題的全過程.
題目:設(shè)a1,a2,…,a7是1,2,…,7的一個排列,
求證:乘積p=(a1-1)(a2-2)…(a7-7)為偶數(shù),
證明:假設(shè)p為奇數(shù),則________①均為奇數(shù)
因奇數(shù)個奇數(shù)之和為奇數(shù),故有奇數(shù)=________②=________③=0但奇數(shù)≠偶數(shù),這一矛盾說明p為偶數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:022
完成反證法證題的全過程.
題目:設(shè)
,,…,是1,2,…,7的一個排列,求證:乘積為偶數(shù).證明:假設(shè)
p為奇數(shù),則________均為奇數(shù).因奇數(shù)個奇數(shù)之和為奇數(shù),故有奇數(shù)
________=________=0.但奇數(shù)≠偶數(shù),這一矛盾說明p為偶數(shù).查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大課標高二版(選修2-2) 2009-2010學(xué)年 第28期 總第184期 北師大課標 題型:044
完成下列反證法證題的全過程:已知0<a≤3,函數(shù)f(x)=x3-ax在區(qū)間[1,+∞)上是增函數(shù),設(shè)當x0≥1,f(x0)≥1時,有f(f(x0))=x0,求證:f(x0)=x0.
證明:假設(shè)f(x0)≠x0,則必有 ① 或 ② .
若 ③ ,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則f(f(x0))>f(x0).
又f(f(x0))=x0,所以f(x0)<x0,這與 ④ 矛盾.
若x0>f(x0)≥1,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則 ⑤ .
又f(f(x0))=x0,所以f(x0)>x0,這與 ⑥ 矛盾.
綜上所述,當x0≥1,f(x0)≥1且f(f(x0))=x0時,有f(x0)=x0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大課標高二版(選修1-2) 2009-2010學(xué)年 第33期 總第189期 北師大課標 題型:044
完成下列反證法證題的全過程:
已知0<a≤3,函數(shù)f(x)=x3-ax在區(qū)間[1,+∞)上是增函數(shù),設(shè)當x0≥1,f(x0)≥1時,有f(f(x0))=x0,求證:f(x0)=x0.
證明:假設(shè)f(x0)≠x0,則必有 ① 或 ② .
若 ③ ,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則f(f(x0))>f(x0).
又f(f(x0))=x0,所以f(x0)<x0,這與 ④ 矛盾.
若x0>f(x0)≥1,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則 ⑤ .
又f(f(x0))=x0,所以f(x0)>x0,這與 ⑥ 矛盾.
綜上所述,當x0≥1,f(x0)≥1且f(f(x0))=x0時,有f(x0)=x0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com