【題目】(本小題滿分10分,第(1)問(wèn) 5分,第(2)問(wèn) 5 分)

近年來(lái),微信越來(lái)越受歡迎,許多人通過(guò)微信表達(dá)自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.而微信支付為用戶帶來(lái)了全新的支付體驗(yàn),支付環(huán)節(jié)由此變得簡(jiǎn)便而快捷.某商場(chǎng)隨機(jī)對(duì)商場(chǎng)購(gòu)物的名顧客進(jìn)行統(tǒng)計(jì),其中歲以下占,采用微信支付的占 歲以上采用微信支付的占。

(1)請(qǐng)完成下面列聯(lián)表:

歲以下

歲以上

合計(jì)

使用微信支付

未使用微信支付

合計(jì)

(2)并由列聯(lián)表中所得數(shù)據(jù)判斷有多大的把握認(rèn)為“使用微信支付與年齡有關(guān)”?

參考公式: , .

參考數(shù)據(jù):

【答案】(1)詳見(jiàn)解析;(2)有的把握認(rèn)為“使用微信支付與年齡有關(guān)”.

【解析】試題分析:(1)歲以下的有使用微信支付的有, 歲以上使用微信支付有,即可完成列聯(lián)表;(2)根據(jù)列聯(lián)表求得觀測(cè)值與參考值對(duì)比即可求得答案.

試題解析:(1)由已知可得, 歲以下的有 人,使用微信支付的有 人, 歲以上使用微信支付的有 人.所以 列聯(lián)表為:

歲以下

歲以上

合計(jì)

使用微信支付

40

10

50

未使用微信支付

20

30

50

合計(jì)

60

40

100

(2)由列聯(lián)表中的數(shù)據(jù)計(jì)算可得的觀測(cè)值為 ,由于 ,所以有的把握認(rèn)為“使用微信支付與年齡有關(guān)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在D上的函數(shù),若滿足: ,都有成立,則稱D上的有界函數(shù),其中M稱為函數(shù)的上界.

(I)設(shè),證明: 上是有界函數(shù),并寫(xiě)出所有上界的值的集合;

(II)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公租房的房源位于四個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請(qǐng)人中:

(1)求恰有1人申請(qǐng)片區(qū)房源的概率;

(2)用表示選擇片區(qū)的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y滿足不等式|x|+|y|≤1,則z的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知自變量x,y滿足則當(dāng)3S5時(shí),z3x2y的最大值的變化范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)(文)】已知函數(shù)的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:;

(3)當(dāng)時(shí),判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆河南省鄭州市第一中學(xué)高三上學(xué)期第一次質(zhì)量檢測(cè)數(shù)學(xué)(文)】已知函數(shù)

(1)證明:;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)

如圖,邊長(zhǎng)為4的正方形中,點(diǎn)分別是上的點(diǎn),將折起,使兩點(diǎn)重合于.

(1)求證:;

(2)當(dāng)時(shí),

求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量的取值為不大于的非負(fù)整數(shù)值,它的分布列為:

0

1

2

n

其中)滿足: ,且

定義由生成的函數(shù),令

(I)若由生成的函數(shù),求的值;

(II)求證:隨機(jī)變量的數(shù)學(xué)期望, 的方差;

(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量表示兩次擲出的點(diǎn)數(shù)之和,此時(shí)由生成的函數(shù)記為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案