【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)(文)】已知函數(shù)是的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,證明:;
(3)當(dāng)時,判斷函數(shù)零點(diǎn)的個數(shù),并說明理由.
【答案】(1)①當(dāng)時, 在上為減函數(shù);②當(dāng)時, 的減區(qū)間為,增區(qū)間為;(2) 證明見解析;(3)一個零點(diǎn),理由見解析.
【解析】
試題分析:(1)討論函數(shù)單調(diào)性,先求導(dǎo),當(dāng)時,,故在上為減函數(shù);當(dāng)時,解可得,故的減區(qū)間為,增區(qū)間為;(2)根據(jù),構(gòu)造函數(shù),設(shè),,當(dāng)時,,所以是增函數(shù),,得證;(3)判斷函數(shù)的零點(diǎn)個數(shù),需要研究函數(shù)的增減性及極值端點(diǎn),由(1)可知,當(dāng)時,是先減再增的函數(shù),其最小值為,而此時,且,故恰有兩個零點(diǎn),
從而得到的增減性,當(dāng)時,;當(dāng)時,;當(dāng)時,,從而在兩點(diǎn)分別取到極大值和極小值,再證明極大值,所以函數(shù)不可能有兩個零點(diǎn),只能有一個零點(diǎn).
試題解析:
(1)對函數(shù)求導(dǎo)得,
,
①當(dāng)時,,故在上為減函數(shù);
②當(dāng)時,解可得,故的減區(qū)間為,增區(qū)間為;
(2) ,設(shè),則,
易知當(dāng)時,,
;
(3)由(1)可知,當(dāng)時,是先減再增的函數(shù),
其最小值為,
而此時,且,故恰有兩個零點(diǎn),
∵當(dāng)時,;當(dāng)時,;當(dāng)時,
,
∴在兩點(diǎn)分別取到極大值和極小值,且,
由知,
∴,
∵,∴,但當(dāng)時,,則,不合題意,所以,故函數(shù)的圖象與軸不可能有兩個交點(diǎn).
∴函數(shù)只有一個零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人獨(dú)立地對某一技術(shù)難題進(jìn)行攻關(guān)。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級不做任何獎勵;若該技術(shù)難題被攻克,上級會獎勵萬元。獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金萬元;若只有2人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元。設(shè)甲得到的獎金數(shù)為X,求X的分布列和數(shù)學(xué)期望。(本題滿分12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分,第(1)問 5分,第(2)問 5 分)
近年來,微信越來越受歡迎,許多人通過微信表達(dá)自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗(yàn),支付環(huán)節(jié)由此變得簡便而快捷.某商場隨機(jī)對商場購物的名顧客進(jìn)行統(tǒng)計,其中歲以下占,采用微信支付的占, 歲以上采用微信支付的占。
(1)請完成下面列聯(lián)表:
歲以下 | 歲以上 | 合計 | |
使用微信支付 | |||
未使用微信支付 | |||
合計 |
(2)并由列聯(lián)表中所得數(shù)據(jù)判斷有多大的把握認(rèn)為“使用微信支付與年齡有關(guān)”?
參考公式: , .
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市出租車收費(fèi)標(biāo)準(zhǔn)如下:起步價為8元,起步里程為3 km(不超過3 km按起步價付費(fèi));超過3 km但不超過8 km時,超過部分按每千米2.15元收費(fèi);超過8 km時,超過部分按每千米2.85元收費(fèi),另每次乘坐需付燃油附加費(fèi)1元.現(xiàn)某人乘坐一次出租車付費(fèi)22.6元,則此次出租車行駛了________km.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,恒有成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014陜西理8】原命題為“若互為共軛復(fù)數(shù),則”,關(guān)于逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( )
A. 真,假,真 B. 假,假,真
C. 真,真,假 D. 假,假,假
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com