已知?jiǎng)訄A過定點(diǎn),且與直線相切,其中.
(I)求動(dòng)圓圓心C的軌跡的方程;
(II)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別為和,當(dāng)、變化且+=時(shí),證明直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
解:(I)如圖,
設(shè)M為動(dòng)圓圓心,(,0)為記為F,過點(diǎn)M作直線x=-的垂線,垂足為N,由題意知:|MF|=|MN|
即動(dòng)點(diǎn)M到定點(diǎn)F與定直線x=-的距離相等。由拋物線的定義知,點(diǎn)M的軌跡為拋物線,其中F(,0)為焦點(diǎn),x=-為準(zhǔn)線,所以軌跡方程為。
(II)如圖,設(shè)A(),B(),由題意得。
又直線OA,OB的傾斜角, 滿足+=,故0<<
∴直線AB的斜率存在,否則,OA,OB直線的傾斜角之和為。
從而設(shè)直線AB的方程為,
顯然,將與聯(lián)立,消去,
得
由韋達(dá)定理知(*)
由,得
將(*)式代入上式整理化簡(jiǎn),得。
此時(shí),直線AB的方程可表示為:,
即。所以直線AB恒過定點(diǎn)(-,)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(05年山東卷理)(14分)
已知?jiǎng)訄A過定點(diǎn),且與直線相切,其中.
(I)求動(dòng)圓圓心的軌跡的方程;
(II)設(shè)A、B是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng)變化且為定值時(shí),證明直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1) 求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線,使過點(diǎn)(0,1),并與軌跡交于兩點(diǎn),且滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1) 求動(dòng)圓的圓心軌跡的方程;(2) 是否存在直線,使過點(diǎn)(0,1),并與軌跡交于兩點(diǎn),且滿足?若存在,求出直線的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1) 求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線,使過點(diǎn),并與軌跡交于兩點(diǎn),且滿足
?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第二次階段性考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分) 已知?jiǎng)訄A過定點(diǎn),且與直線相切,橢圓 的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是,點(diǎn)在橢圓上.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動(dòng)直線與軌跡在處的切線平行,且直線與橢圓交于兩點(diǎn),問:是否存在著這樣的直線使得的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com