10.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=0,S5=-5.
(1)求{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n+1

分析 (1)根據(jù)等差數(shù)列的前n項(xiàng)和公式解方程組即可求{an}的通項(xiàng)公式;
(2)易得a1+a4+a7+…+a3n+1表示首項(xiàng)為1且公差為-3的等差數(shù)列的前n+1項(xiàng)和,由求和公式可得.

解答 解:(1)由等差數(shù)列的性質(zhì)可得$\left\{\begin{array}{l}{3{a}_{1}+3d=0}\\{5{a}_{1}+\frac{5×4d}{2}=-5}\end{array}\right.$,
解得a1=1,d=-1,
則{an}的通項(xiàng)公式an=1-(n-1)=2-n;
∵{an}為等差數(shù)列,
∴a1+a4+a7+…+a3n+1以1為首項(xiàng),以-3為公差的等差數(shù)列,
∴a1+a4+a7+…+a3n+1=n+1+$\frac{(n+1)(n+1-1)×(-3)}{2}$=$\frac{(n+1)(2-3n)}{2}$

點(diǎn)評 本題主要考查等差數(shù)列的通項(xiàng)公式的求解,以及等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a=log0.53,b=20.5,c=0.50.3,則a,b,c的大小關(guān)系是a<c<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)△ABC中,角A,B,C的對邊分別為a、b、c,且2sinA=sinB+sinC,a=2,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.計(jì)算$({\frac{1}{2}-\frac{{\sqrt{3}}}{2}i}){({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^2}$=( 。
A.$\frac{1}{8}-\frac{{3\sqrt{3}}}{8}i$B.$\frac{1}{8}+\frac{{3\sqrt{3}}}{8}i$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知橢圓具有如下性質(zhì):若橢圓的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),則橢圓上一點(diǎn)A(x0,y0)處的切線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,試運(yùn)用該性質(zhì)解決以下問題:橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距為2,且過點(diǎn)$(1,\frac{{\sqrt{2}}}{2})$.點(diǎn)B為橢圓C1在第一象限中的任意一點(diǎn),過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),則△OCD面積的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)P($\frac{1}{2},8$)在冪函數(shù)f(x)的圖象上,則f(2)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是?n0∈N*,f(n0)∉N*或f(n0)>n0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線的左、右焦點(diǎn)分別為F1,F(xiàn)2,在左支上過F1的弦AB的長為5,若實(shí)軸長度為8,則△ABF2的周長是( 。
A.26B.21C.18D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(理)已知平面α和平面β的法向量分別為$\overrightarrow{a}$=(1,1,2),$\overrightarrow$=(x,-2,3),且α⊥β,則x=-4.

查看答案和解析>>

同步練習(xí)冊答案