若直角坐標平面內的兩個不同的點A、B滿足以下兩個條件:
①A、B都在函數(shù)y=f(x)的圖象上;
②A、B關于原點對稱.
則稱點對[A,B]為函數(shù)y=f(x)的一對“好朋友”(注:點對[A,B]與[B,A]為同一“好朋友”)已知函數(shù)f(x)=
lnx(x>0)
-x2-3x(x≤0)
,則此函數(shù)的“好朋友”有( 。
A、0對B、1對C、2對D、3對
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=xtanx,x∈(-
2
,
2
)且x≠±
π
2
,則該函數(shù)的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的圖象與函數(shù)y=log2
x
2
)的圖象關于y=x對稱,則函數(shù)f(x)解析式為( 。
A、f(x)=2x
B、f(x)=2x+1
C、f(x)=(
1
2
x
D、f(x)=(
1
2
x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2x+log2x的零點的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義符號函數(shù)sgnx=
1,  x>0
0,  x=0
-1,  x<0
,設函數(shù)f(x)=
sgn(1-x)+1
2
•f1(x)+
sgn(x-1)
2
•f2(x),x∈(0,2)其中f1(x)=x2+1,f2(x)=-2x+4.若f(f(a))∈(0,1),則實數(shù)a的取值范圍是(  )
A、(0,
2
2
B、(1,
5
4
C、(0,
2
2
)∪(1,
5
4
D、(
2
2
,1)∪(1,
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)和定義在{x|x≠0}上的偶函數(shù)g(x)分別滿足f(x)=
2x-1(0≤x≤1)
1
x
(x≥1)
,g(x)=log2x(x>0),若存在實數(shù)a,使得f(a)=g(b)成立,則實數(shù)b的取值范圍是( 。
A、[-2,2]
B、[-2,-
1
2
]∪[
1
2
,2]
C、[-
1
2
,0)∪(0,
1
2
]
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
ex, x≥4
f(x+1), x<4
,則f(ln4)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x(x≥3)
f(x+1)(x<3)
,則f(log23)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b表示兩條直線,M表示平面,給出下列四個命題:
①若a∥M,b∥M,則a∥b;
②若b?M,a?M,a∥b,則a∥M;
③若a⊥b,b?M,則a⊥M;
④若a⊥M,a⊥b,則b∥M,
其中正確命題的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

同步練習冊答案