【題目】設(shè)橢圓的右焦點(diǎn)為,過(guò)的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)當(dāng)與軸垂直時(shí),求直線的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),證明:.
【答案】(1) AM的方程為或.
(2)證明見(jiàn)解析.
【解析】分析:(1)首先根據(jù)與軸垂直,且過(guò)點(diǎn),求得直線l的方程為x=1,代入橢圓方程求得點(diǎn)A的坐標(biāo)為或,利用兩點(diǎn)式求得直線的方程;
(2)分直線l與x軸重合、l與x軸垂直、l與x軸不重合也不垂直三種情況證明,特殊情況比較簡(jiǎn)單,也比較直觀,對(duì)于一般情況將角相等通過(guò)直線的斜率的關(guān)系來(lái)體現(xiàn),從而證得結(jié)果.
詳解:(1)由已知得,l的方程為x=1.
由已知可得,點(diǎn)A的坐標(biāo)為或.
所以AM的方程為或.
(2)當(dāng)l與x軸重合時(shí),.
當(dāng)l與x軸垂直時(shí),OM為AB的垂直平分線,所以.
當(dāng)l與x軸不重合也不垂直時(shí),設(shè)l的方程為,,
則,直線MA,MB的斜率之和為.
由得
.
將代入得
.
所以,.
則.
從而,故MA,MB的傾斜角互補(bǔ),所以.
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和的焦點(diǎn)分別為, 交于O,A兩點(diǎn)(O為坐標(biāo)原點(diǎn)),且
(Ⅰ)求拋物線的方程;
(Ⅱ)過(guò)點(diǎn)O的直線交的下半部分于點(diǎn)M,交的左半部分于點(diǎn)N,點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)
(Ⅰ)當(dāng)a=﹣1時(shí),求不等式f(x)≥5的解集;
(Ⅱ)證明:f(x)≥2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1 , x2 , 則e e 的最大值為( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大。
(2)若c=,a2+b2=10,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|2x+2|﹣|x﹣2|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2﹣ t恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點(diǎn),△ABF1的周長(zhǎng)為16,△AF1F2的周長(zhǎng)為12.
(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;
(2)若直線l與橢圓E交于C,D兩點(diǎn),且P(2,2)是線段CD的中點(diǎn),求直線l的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均為正實(shí)數(shù),且ab+bc+ac=1.
(Ⅰ)當(dāng)b=1時(shí),求不等式f(x)≥1的解集;
(Ⅱ)當(dāng)x∈R時(shí),求證f(x)≤g(x).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com