函數(shù)y=1-2x(x≤0)的值域是(  )
A、(0,1)
B、(-∞,1)
C、(0,1]
D、[0,1)
考點(diǎn):函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用觀察法求函數(shù)的值域即可.
解答: 解:∵x≤0,
∴0<2x≤1,
∴0≤1-2x<1,
故選D.
點(diǎn)評(píng):本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司規(guī)定:對(duì)于小于或等于150件的訂購合同,每件售價(jià)為280元,對(duì)于多于150的訂購合同,每超過一件,則每件售價(jià)比原來減少1元,當(dāng)公司的收益最大時(shí)訂購件數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+1,則f(-1)等于( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等比數(shù)列,函數(shù)y=x2-x-2的兩個(gè)零點(diǎn)是a2,a3,則a1a4=(  )
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),如圖所示,線段OA,AB,BC和射線CD組成的折線是函數(shù)f(x)的部分圖象,其中O為坐標(biāo)原點(diǎn),A(2,1)B(3,1)C(4,0)D(5,1)
(Ⅰ)求f(-1)和f(6)的值
(Ⅱ)若f(log2x-1)>f(log2x),求實(shí)數(shù)x的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
9
=-5的一條漸近線方程是( 。
A、2x-3y=0
B、3x+2y=0
C、9x-4y=0
D、4x-9y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式lg(x-2)<1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中表示相同函數(shù)的是( 。
A、y=
3x3
與y=
x2
B、y=lnex與y=elnx
C、y=
(x-1)(x+3)
x-1
與y=x+3
D、y=x0與y=
1
x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,復(fù)數(shù)z=(1+i)2,則z的共軛復(fù)數(shù)為(  )
A、-2iB、2i
C、2-2iD、2+2i

查看答案和解析>>

同步練習(xí)冊答案