某公司規(guī)定:對于小于或等于150件的訂購合同,每件售價為280元,對于多于150的訂購合同,每超過一件,則每件售價比原來減少1元,當(dāng)公司的收益最大時訂購件數(shù)為
 
考點:根據(jù)實際問題選擇函數(shù)類型
專題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:設(shè)x表示銷售的件數(shù),R表示公司的收益,則R等于每件的售價x×銷售件數(shù),分類討論,即可得出結(jié)論.
解答: 解:設(shè)x表示銷售的件數(shù),R表示公司的收益,則R等于每件的售價x×銷售件數(shù),
當(dāng)x≤150時,則R≤150×280=42000
當(dāng)x>150時,則R=[280-(x-150)]x=430x-x2為公司收益,
先求R′(x)=430-2x,令R′(x)=0,得x=215時,R有最大值.
最大收益為R=430×215-(215)2=92450,
∴當(dāng)公司的收益最大時訂購件數(shù)為215.
故答案為:215.
點評:本題考查根據(jù)實際問題選擇函數(shù)類型,考查導(dǎo)數(shù)知識,建立函數(shù)解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

y=x|x|+3的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(0,1),C(2,3),動點P滿足|
PC
|=1,過點M且斜率為k的直線l與動點P的軌跡相交于A、B兩點.
(1)求動點P的軌跡方程;
(2)求實數(shù)k的取值范圍;
(3)求證:
MA
MB
為定值;
(4)若O為坐標(biāo)原點,且
OA
OB
=12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Г的方程為
x2
a2
+
y2
b2
=1(a>b>0)點A,B分別為Г上的兩個動點,O為坐標(biāo)原點,且OA⊥OB;其中OA,OB稱為橢圓的一條半徑.
(1)求證:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值為
4a2b2
a2+b2
;
(2)過點O作OH⊥AB于H,求證:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2

(3)將(1)(2)的結(jié)論推廣至雙曲線,結(jié)論是否依然成立,若成立,證明你的結(jié)論;若不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=
n2+n
2
,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=2 an+an,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=logax(a>0,a≠1)滿足f[f(a2)]+f(3)=af(1)
(1)求a;
(2)計算f2(2)+f(2)f(3)+f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-3,3]上的奇函數(shù),且f(x)在(0,1]是指數(shù)函數(shù),在[1,3]上是二次函數(shù),當(dāng)1≤x≤3時f(x)≤f(2)=
3
2
,f(3)=
1
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知函數(shù)y=log24x圖象上的兩點A,B和函數(shù)y=log2x上的點 C,線段AC平行于y軸,三角形ABC為正三角形時,點B的坐標(biāo)為(p,q),則實數(shù)p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=1-2x(x≤0)的值域是( 。
A、(0,1)
B、(-∞,1)
C、(0,1]
D、[0,1)

查看答案和解析>>

同步練習(xí)冊答案