16.已知雙曲線C:$\frac{x^2}{m}-\frac{y^2}{n}$=1,曲線f(x)=ex在點(diǎn)(0,2)處的切線方程為2mx-ny+2=0,則該雙曲線的漸近線方程為( 。
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

分析 利用導(dǎo)數(shù)以及切線的斜率,切線方程,求出m,n,然后求解雙曲線的漸近線方程.

解答 解:∵f(x)=ex,∴f′(0)=1,曲線f(x)=ex在點(diǎn)(0,2)處的切線方程為:x-y+2=0,
∴2m=1,n=1,漸近線方程為y=±$\sqrt{\frac{n}{m}}x$=$±\sqrt{2}x$,
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{a{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$-2ax+2a+1的圖象經(jīng)過(guò)四個(gè)象限,則實(shí)數(shù)a的取值范圍是(  )
A.(-$\frac{6}{5}$,$\frac{3}{16}$)B.(-$\frac{8}{5}$,-$\frac{3}{16}$)C.(-$\frac{8}{5}$,-$\frac{1}{16}$)D.(-$\frac{6}{5}$,-$\frac{3}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.化簡(jiǎn)$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$的結(jié)果是( 。
A.1B.sinαC.-tanαD.tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在(2x+1)(x-1)5的展開(kāi)式中含x3項(xiàng)的系數(shù)是-10(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx+$\frac{1}{x}$+ax,x∈(0,+∞)(a為實(shí)常數(shù)).
(1)若函數(shù)f(x)在x=1處取極值,求此時(shí)函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在區(qū)間(2,3)上存在極值,求實(shí)數(shù)a的取值范圍;
(3)設(shè)各項(xiàng)為正的無(wú)窮數(shù)列{xn}滿足lnxn+$\frac{1}{{{x_{n+1}}}}$<1(n∈N*),證明:x1≤1.
(提示:當(dāng)0<q<1時(shí),1+q+q2+q3+…+qn+…=$\frac{1}{1-q}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn
(1)求an及Sn;
(2)令bn=$\frac{1}{{{a}_{n}}^{2}-1}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在銳角△ABC中,已知$AB=2\sqrt{3},BC=3$,其面積${S_{△ABC}}=3\sqrt{2}$,則△ABC的外接圓面積為$\frac{27π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.命題“?x∈R,x2+1≥x”的否定是?x∈R,x2+1<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在R上的函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)$x∈[0,\frac{π}{2})$時(shí),f(x)=sinx,則$f(\frac{8}{3}π)$的值為( 。
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案