已知△ABC中,a、b、c分別是三個(gè)內(nèi)角A、B、C的對(duì)邊,關(guān)于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若,△ABC的面積,求當(dāng)角C取最大值時(shí)a+b的值.
【答案】分析:(Ⅰ)根據(jù)不等式的性質(zhì)可判斷出判別式小于或等于0且cosC>0,求得cosC的范圍,進(jìn)而根據(jù)余弦函數(shù)的單調(diào)性求得C的最大值.
(Ⅱ)根據(jù)(Ⅰ)中求得C,利用三角形面積公式求得ab的值,進(jìn)而代入余弦定理求得a+b的值.
解答:解:(Ⅰ)∵不等式x2cosC+4xsinC+6<0的解集是空集.
,即,

,∴角C的最大值為60°.
(Ⅱ)當(dāng)C=60°時(shí),,∴ab=6,
由余弦定理得c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC,


點(diǎn)評(píng):本題主要考查了余弦定理的應(yīng)用,解不等式問(wèn)題.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線l∥AB,與AC,BC依次交于E,F(xiàn),S△CEF:S△ABC=1:4.求l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長(zhǎng)c=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
滿(mǎn)足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對(duì)任意的滿(mǎn)足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案