【題目】將函數(shù)f(x)=2 cos2x﹣2sinxcosx﹣ 的圖象向左平移t(t>0)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則t的最小值為(
A.
B.
C.
D.

【答案】D
【解析】解:將函數(shù)f(x)=2 cos2x﹣2sinxcosx﹣ = cos2x﹣sin2x=2cos(2x+ )的圖象 向左平移t(t>0)個(gè)單位,可得y=2cos(2x+2t+ )的圖象.
由于所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則2t+ =kπ+ ,k∈Z,
則t的最小為
故選:D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐ABCD中,BC⊥CD,Rt△BCD斜邊上的高為1,三棱錐ABCD的外接球的直徑是AB,若該外接球的表面積為16π,則三棱錐ABCD體積的最大值為(
A.
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)離心率為 的橢圓E: + =1(a>b>0)的左、右焦點(diǎn)為F1 , F2 , 點(diǎn)P是E上一點(diǎn),PF1⊥PF2 , △PF1F2內(nèi)切圓的半徑為 ﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司購(gòu)買(mǎi)了A,B,C三種不同品牌的電動(dòng)智能送風(fēng)口罩.為了解三種品牌口罩的電池性能,現(xiàn)采用分層抽樣的方法,從三種品牌的口罩中抽出25臺(tái),測(cè)試它們一次完全充電后的連續(xù)待機(jī)時(shí)長(zhǎng),統(tǒng)計(jì)結(jié)果如下(單位:小時(shí)):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8


(1)已知該公司購(gòu)買(mǎi)的C品牌電動(dòng)智能送風(fēng)口罩比B品牌多200臺(tái),求該公司購(gòu)買(mǎi)的B品牌電動(dòng)智能送風(fēng)口罩的數(shù)量;
(2)從A品牌和B品牌抽出的電動(dòng)智能送風(fēng)口罩中,各隨機(jī)選取一臺(tái),求A品牌待機(jī)時(shí)長(zhǎng)高于B品牌的概率;
(3)再?gòu)腁,B,C三種不同品牌的電動(dòng)智能送風(fēng)口罩中各隨機(jī)抽取一臺(tái),它們的待機(jī)時(shí)長(zhǎng)分別是a,b,c(單位:小時(shí)).這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為μ1 , 表格中數(shù)據(jù)的平均數(shù)記為μ0 . 若μ0≤μ1 , 寫(xiě)出a+b+c的最小值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的離心率為 ,右焦點(diǎn)為F,點(diǎn)B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn) 的直線交橢圓C于M,N兩點(diǎn),交直線x=2于點(diǎn)P,設(shè) , ,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,若關(guān)于x的方程x2+x+|a﹣ |+|a|=0有實(shí)根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于, 兩點(diǎn)(, 不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn).求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全國(guó)大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國(guó)學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國(guó)最具影響力的機(jī)器人項(xiàng)目,是全球獨(dú)創(chuàng)的機(jī)器人競(jìng)技平臺(tái).全國(guó)大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅(jiān)持和態(tài)度,展現(xiàn)的是個(gè)人實(shí)力以及整個(gè)團(tuán)隊(duì)的力量.2015賽季共吸引全國(guó)240余支機(jī)器人戰(zhàn)隊(duì)踴躍報(bào)名,這些參賽戰(zhàn)隊(duì)來(lái)自全國(guó)六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國(guó)科大,西安交大等眾多國(guó)內(nèi)頂尖高校,經(jīng)過(guò)嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊(duì)參與到2015年全國(guó)大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊(duì)1000個(gè),大一、大二、大三、大四分別有100,200,300,400個(gè),為挑選優(yōu)秀團(tuán)隊(duì),現(xiàn)用分層抽樣的方法,從以上團(tuán)隊(duì)中抽取20個(gè)團(tuán)隊(duì).

(1)應(yīng)從大三抽取多少個(gè)團(tuán)隊(duì)?

(2)將20個(gè)團(tuán)隊(duì)分為甲、乙兩組,每組10個(gè)團(tuán)隊(duì),進(jìn)行理論和實(shí)踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.從統(tǒng)計(jì)學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)在區(qū)間上的圖像如圖所示,將該函數(shù)圖像上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的一半(縱坐標(biāo)不變,再向右平移個(gè)單位長(zhǎng)度后,所得到的圖像關(guān)于直線對(duì)稱,則的最小值為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案