已知△ABC內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,面積S=
3
,且
AB
AC
=2.
(Ⅰ)求角A;
(Ⅱ)若c=1+b,求a的值.
考點(diǎn):余弦定理,平面向量數(shù)量積的運(yùn)算
專題:解三角形
分析:(Ⅰ)由S=
3
AB
AC
=2
,可得
1
2
bcsinA=
3
bccosA=2
,求得tanA的值,可得A的值.
(Ⅱ)由條件求得bc=4,c-b=1,再由余弦定理求得a2=b2+c2-2bccosA=b2+c2-bc=(c-b)2+bc的值,可得a的值.
解答: 解:(Ⅰ)由S=
3
AB
AC
=2
,得
1
2
bcsinA=
3
bccosA=2
,
故有 tanA=
3
,所以A=60°.
(Ⅱ)由bccos60°=2,可得bc=4,由c=1+b,可得c-b=1.
由余弦定理可知,a2=b2+c2-2bccosA=b2+c2-bc=(c-b)2+bc=1+4=5,
a=
5
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積的定義、正弦定理的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
2
2
cosα+
2
2
sinα=
1
4
,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知?jiǎng)狱c(diǎn)P(x,y)(y≤0)到點(diǎn)F(0,2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(Ⅰ)求點(diǎn)P的軌跡E的方程;
(Ⅱ)若直線l斜率為1且過點(diǎn)(1,0),其與軌跡E交于點(diǎn)M、N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足a1=2,an-1=an(an+1-1),bn=an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,n∈N*
(1)證明數(shù)列{
1
bn
}
為等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明:對(duì)任意的n∈N*,有1+
n
2
S2n
1
2
+n成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{
2n
an+1
}的前n項(xiàng)和,求Sn
(3)證明:
1
a1
+
1
a2
+
1
a3
+…+
1
an+1
5
3
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線L1,L2都過點(diǎn)(1,-2)且互相垂直,若拋物線y=ax2與兩直線中至少一條相交,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,PD⊥面ABCD,AB∥DC,AD⊥DC,AD=
2
,CD=4,PD=2,E為AP上一點(diǎn),DE⊥AP,F(xiàn)是平面DEC與BP的交點(diǎn).
(Ⅰ)求證:EF∥AB;
(Ⅱ)求證:AP⊥面EFCD;
(Ⅲ)求PC與面EFCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,
an-an+1
an+1
=n,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
2n
an
,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn
(3)證明:a12+a22+a32+…+an2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4
0
16-x2
dx=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案