(本題滿分14分)設(shè)有關(guān)于的一元二次方程.

(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù),是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;

(2)若是從區(qū)間[0,3]任取的一個數(shù),是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

 

【答案】

(1)(2)

【解析】

試題分析:記事件為“方程有實根”,

時,方程有實根的充要條件為.

(1)基本事件共有12個:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.

事件中包含9個基本事件,事件發(fā)生的概率為

P()=.                                                          ……7分

(2)試驗的全部結(jié)果所構(gòu)成的區(qū)域為

{(a,b)|0≤a≤3,0≤b≤2}.

構(gòu)成事件的區(qū)域為

{(a,b)|0≤a≤3,0≤b≤2,a≥b},

所以所求的概率為

.                                               ……14分

考點:本小題主要考查古典概型和幾何概型的概率求解公式的應(yīng)用,考查學(xué)生的分析問題、解決問題的能力和運算求解能力和分類討論思想和劃歸思想的應(yīng)用.

點評:要高考中古典概型和幾何概型在選擇題、填空題和與其他知識點相結(jié)合的解答題中均有考查. 解決此類問題,應(yīng)掌握計算古典概型、幾何概型的常用方法.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

設(shè)函數(shù)。

(1)若,過兩點的中點作軸的垂線交曲線于點,求證:曲線在點處的切線過點;

(2)若,當恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當時,用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本題滿分14分)設(shè)橢圓的左、右焦點分別為F1
F2,直線過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若的周長為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點A、B,若,求面積的取值范圍。(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題

(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

 (I)證明:函數(shù)是集合M中的元素;

 (II)證明:函數(shù)具有下面的性質(zhì):對于任意,都存在,使得等式成立。 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

本題滿分14分)

設(shè)函數(shù).

(1)若,求函數(shù)的極值;

(2)若,試確定的單調(diào)性;

(3)記,且上的最大值為M,證明:

 

 

查看答案和解析>>

同步練習(xí)冊答案